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Abstract 

For Navy relevant geometries, separation of wall bounded flows is a highly complex 
phenomenon. Because of the relatively high Reynolds numbers involved, separation is always 
associated with considerable unsteadiness. This unsteadiness is caused by large coherent 
structures that are a consequence of hydrodynamic instability mechanisms of the mean flow. In 
addition, due to the shape of underwater vehicles (submarines, torpedoes, low aspect ratio lifting 
or control surfaces) the separation is three-dimensional (3-D). The combination of three- 
dimensionality and unsteadiness results in a highly complex time-dependent topology of the 
separated region. In a combined numerical/experimental effort we investigated laminar 
separation bubbles in external flows. For the simulations we employed highly-resolved direct 
numerical simulations (DNS) to obtain a deeper understanding of the various physical 
mechanism governing separation, transition, and reattachment of 3-D bubbles. Ultimately, such 
understanding may pave the way for the development of effective and efficient strategies for 
preventing separation for practical applications. We also evaluated hybrid turbulence models for 
high Reynolds number flows. In particular, we carried out DNS, RANS, and hybrid simulations 
of a turbulent square-duct flow. Based on these simulations we decided on two hybrid strategies 
for simulating the asymmetric diffuser experiments that were conducted at Stanford University 
by J. Eaton and co-workers. 
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1. INTRODUCTION 

Separation for Navy relevant geometries (submarines, torpedoes, fins, low aspect ratio lifting 
or control surfaces) is often three-dimensional (3-D) and associated with considerable 
unsteadiness. Strong unsteadiness can be introduced by coherent flow structures which can be 
characterized as areas of organized fluid motion within a turbulent flow. These structures are a 
consequence of hydrodynamic instabilities and originate in the separated shear layer. They 
impact the separation and reattachment behavior and thereby affect size and shape of the 
separated region or separation bubble. This can cause considerable unsteady hydrodynamic loads 
and ultimately a change in the lift and drag characteristics of the vehicle. An improved 
understanding of the flow physics governing 3-D separation in general and the dynamics of such 
structures in particular is desirable as it may lead to techniques that allow for the prediction of 
unsteady loads which would in turn enable the development of geometries with more favorable 
hydrodynamic properties. An improved understanding may also point out possibilities for novel 
devices or strategies that may help prevent or control separation by influencing the unsteady flow 
structures. 

The topology of 3-D separation bubbles can be analyzed by considering the limiting skin 
friction lines [Tobak and Peake, 1982]. Saddle points are points where two skin friction lines 
cross each other. Points to which an infinite number of skin friction lines converge are known as 
nodes and foci. Similar structures can be identified in wall normal planes, such as the symmetry 
plane. Three-dimensional flow separation cannot be universally characterized by the vanishing of 
wall shear. Rather, as Lighthill [1963] pointed out, it is characterized by the convergence of the 
limiting skin friction lines onto one separation skin friction line. The dividing stream-surface 
originating from this line is called the separation stream-surface. Focal points, around which skin 
friction lines spiral, are the roots of wall-normal vortices, often referred to as "horn vortices 

Because of the 3-D nature of the flow the underlying physics are very complex. For separated 
flows hydrodynamic instability mechanisms of the mean flow can lead to coherent structures. 
The instability mechanisms may be 3-D and the resultant structures and their interaction can be 
very complicated. Progress in modeling and understanding of the underlying physical 
mechanisms will more likely be made if the problem is broken down into various sub-aspects 
rather than if all issues are addressed simultaneously. We decided to advance simulation 
methodologies and understanding for related simplified model problems that exclude certain 
aspects of the overall scenario. In particular, using both water tunnel experiments and direct 
numerical simulations (DNS), we investigated 3-D separation bubbles on a flat plate. Separation 
was induced by a displacement body that was located in close proximity to the plate. 

The flow around naval vessels is also characterized by high Reynolds numbers. Simulations 
of such flows are challenging for many reasons: The spectrum of turbulent length scales spans 
several orders of magnitude. Even with the most powerful supercomputers it is impossible to 
resolve all turbulence length scales. This motivates the development of turbulence models that 
capture as much resolved motion as permitted by the grid resolution and model all remaining 
smaller scale turbulent motion. For a variety of engineering problems that involve large-scale 
unsteadiness, Reynolds-averaged Navier-Stokes (RANS) does not yield accurate results and 
large eddy simulation (LES) is often not computationally feasible. In particular, LES suffers 
from a very restrictive grid resolution requirement near walls. An idea pursued by many 
researchers is to switch or gradually blend to RANS near walls. Speziale was among the first to 
propose a hybrid turbulence modeling approach that combines the advantages of RANS, LES, 



and DNS [Speziale 1997]. Ideally, hybrid models blend DNS, LES, and RANS such that optimal 
use is made of the available computational assets. This requires that the filter width is related to 
the spatial and temporal resolution and the employed turbulence models are state-of-the-art. In 
Speziale's approach the "feedback" from the turbulence model equations to the Navier-Stokes 
equations is scaled by a contribution function which is dependent on the local ratio of grid line 
spacing and Kolmogorov length scale. This approach was later called flow simulation 
methodology (FSM) [Fasel et al. 2002, Israel 2005, Zhang et al. 2000]. Another example of a 
hybrid model with a fixed filter width is the filter-based RANS (FBR) approach by Johansen et 
al. [2004]. This model was designed such that a one-equation sub-grid stress (SGS) model is 
recovered in the fine grid limit. Because the fixed filter width has to be chosen such that it is 
always larger than the local grid spacing, the spatial and temporal resolution will not always be 
optimal. This motivated Hajjawi et al. [2008] to employ the FBR with a local filter width. A 
simulation of a turbulent channel flow using a hybrid turbulence model, where a Smagorinsky 
model was switched to a RANS model was carried out by Hamba [2003]. A mismatch in the 
velocity profiles was observed at the interface region between the two approaches. Turbulent 
channel flow simulations by Piomelli et al. [2003] address this difficulty. The discontinuity at the 
interface is attributed to a mismatch of scales between RANS and LES. While the turbulence 
model supports most of the Reynolds shear stress in the RANS region, the resolved eddies must 
supply the dominant contribution in the LES region. In the transition region the eddy-viscosity 
contribution to the mean shear is too low while the energy-carrying eddies have not yet been 
generated. The problem can be partially remedied through the introduction of a "backscatter" 
model based on stochastic forcing. For example, Batten et al. [2004] introduced random velocity 
fluctuations obtained from a synthetic turbulence model for seeding turbulence in their hybrid 
turbulence model simulations of a turbulent channel flow. 

Turbulent channel and diffuser flows are good test cases for such models. In particular, low 
Reynolds number duct flows are frequently chosen for DNS, RANS, and hybrid model 
validation efforts. The turbulent asymmetric diffuser flow experiment at Stanford University is a 
particularly well documented experiment [Cherry et al. 2008]. In this experiment the approach 
channel flow transitions fully before reaching the diffuser inlet. The approach flow Reynolds 
number was 15,380 based on hydraulic diameter and bulk velocity and 10,000 based on channel 
height and bulk velocity. Earlier 2-D diffuser experiments suffered from the fact that an infinite 
span cannot be realized in the laboratory. This issue is avoided for the 3-D diffuser because of 
the side walls. Using various different hybrid turbulence models we simulated the flow through 
the so-called baseline diffuser geometry for which full flow field experimental data is available 
[Cherry et al. 2008]. As these simulations are very compute time intensive we decided to modify 
and validate candidate hybrid RANS/LES models for a turbulent square-duct flow at a bulk 
Reynolds number of 10,000, because for this Reynolds number reference data for validation are 
available in the literature. Models that fail to predict the channel flow will likely also fail to 
predict the turbulent separation in the diffuser. 

Turbulent duct flows such as the square-duct flow occur in many technical applications such 
as air ducts in buildings or ducts in aerospace and marine applications. In square-duct flows, an 
imbalance of the Reynolds-stresses near the corners results in a secondary flow which transports 
fluid into the corners [Nikuradse 1926]. With linear RANS models the Reynolds-stress 
imbalance cannot be captured and the secondary flow does not develop. Predictions of the 
secondary flow require non-linear Reynolds stress or full Reynolds-stress models. The low- 
Reynolds number square-duct flow is accessible by DNS. Huser and Biringen [1993] carried out 



a DNS of a square-duct flow for a Reynolds number based on bulk velocity and hydraulic 
diameter of Re = 10,320 (which corresponds to a Reynolds number based on mean friction 
velocity and hydraulic diameter of ReT= 600). The computational grid had 96* 101x101 points 
(streamwise * cross-flow directions) and dimensions 6.4h><hxh (length x width x height), where 
h is the channel height. The convective terms were discretized with fifth-order-accurate upwind 
biased finite-differences and the viscous terms were discretized with fourth-order-accurate 
central finite-differences. The minimum correlation in the streamwise direction was at Ax = 3.2h, 
indicating that the streamwise domain extent of Lx = 6.4h was sufficient. The comparison with a 
RANS calculation based on Speziale's non-linear k-s model revealed some significant 
differences between the model behavior and the DNS results, such as for example, an under- 
prediction of the intensity of the secondary flow [Huser at al. 1994]. Gavrilakis [1992] simulated 
a square-duct flow at ReT = 300. The computational domain for this DNS had dimensions 
57ihxhxh with 1000x127x127 points. The code was second-order-accurate in both, space and 
time. In LES sub-grid turbulence is modeled thus allowing for a lower grid resolution compared 
to DNS. Madabhushi and Vanka [1991] carried out a LES with the Smagorinsky SGS model of a 
square-duct flow at ReT = 360 (Re = 5,810). The grid resolution was 65x65 in the cross-flow 
plane with 32 Fourier modes in the streamwise direction. The dimensions of the computational 
domain were 2rchxhxh. The discretization was second-order-accurate. We employed DNS and 
RANS as well as hybrid RANS/LES for simulating the square-duct flow with different grid 
resolutions. For the hybrid simulations, we utilized both the FSM and FBR based on different 
versions of the k-co model by Wilcox [2006]. 

This report is organized as follows: In Section 2 the scope of investigations is introduced. 
Section 3 provides details on the simulation strategies and water tunnel experiments. Results are 
provided in Sections 4-7. Finally, in Section 8 the results are summarized and conclusions are 
drawn. 



2. SCOPE OF INVESTIGATIONS 

The main objective of our numerical investigations and water tunnel experiments was to gain 
insight into the physical mechanisms governing 3-D separation. Of particular interest were the 
development, dynamics, and interaction of energetic vortical structures (spanwise/streamwise) 
that develop from the different hydrodynamic instabilities that are present in 3-D separated 
flows. 

We also investigated the flow through the Stanford asymmetric diffuser by J. Eaton and co- 
workers [Cherry et al. 2008], which is a challenging benchmark for evaluating the performance 
of different turbulence modeling approaches such as 3-D RANS and hybrid RANS/LES. Of 
particular interest here was the development of improved turbulence models for complex, non- 
equilibrium turbulent shear flows. As a reference, and for validation of our simulation codes, we 
also considered the turbulent square-duct flow. This flow is less challenging but better 
documented than the diffuser flow and thus served as an additional test case for the various 
turbulence models. 

In summary, our approach consisted of: 
1) High-resolution DNS of 3-D separation bubbles on a flat plate (§4) 
2) Water tunnel experiments of 3-D separation bubbles on a flat plate (§5) 
3) Turbulent square-duct flow simulations (§6) 
4) Simulations of the turbulent flow through the Stanford baseline asymmetric diffuser (§7) 

We considered three different geometries: 
1) We carried out simulations and experiments where we investigated 3-D separation 
bubbles on a flat plate. Separation was induced through the close vicinity of an asymmetric 
displacement body. 
2) For turbulence model validation we simulated the turbulent flow through a square-duct. 
3) We simulated the turbulent flow through the Stanford asymmetric diffuser which was 
designed and tested by J. Eaton and co-workers at Stanford University. 



2.1 Geometry 1: A\isymmetric Displacement Body over Flat Plate 

In the water tunnel experiments, an axisymmetric cone-shaped displacement body of 
diameter D with a spherical front end was placed in close proximity above a flat plate to generate 
a separation bubble on the flat plate (see Fig. 2.1). Suction was applied through holes in the 
displacement body in order to prevent separation at the aft section of the displacement body. 
All measurements and computations are for a body diameter of D=0.1m and a half-opening angle 
of 20°. By adjusting the distance H of the displacement body from the flat plate, the non- 
dimensional pressure distribution can be altered. The boundary layer thickness at separation can 
be varied by either moving the body in the streamwise direction or by changing the approach 
flow velocity Uoo. For both simulations and experiments the distance to the leading edge of the 
flat plate was kept constant at s = 0.25m. 

H 

axisymmetric 3-D displacement body 

flat plate 3_D separatjon bubb|e 

Fig 2.1: Axisymmetric displacement body over flat plate. 

2.2 Geometry 2: Stanford Asymmetric Diffuser 

We simulated the flow through the asymmetric 3-D diffuser by Eaton and co-workers (Fig. 
2.2) for which high resolution velocity volume data is available [Cherry et al. 2008]. The 
rectangular duct approach flow has cross-flow dimensions h><3.33h (height x width) and a length 
that is sufficient to guarantee fully turbulent flow at the diffuser inlet. The approach flow 
Reynolds number is 10,000 based on duct height and bulk velocity and 15,380 based on 
hydraulic diameter and bulk velocity. The diffuser opening angles are atan(4-l)/15=l 1.3deg and 
atan(4-3.33)/15=2.56deg. The cross-sectional area at the diffuser exit is 4x4=16. The 
experimental data shows turbulent separation in the diffuser. 
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Fig. 2.2: Stanford baseline diffuser. 

2.3 Geometry 3: Square-Duct 

In addition, we investigated the turbulent flow through a square-duct at a Reynolds number 
based on hydraulic diameter and bulk velocity of 10,000. Because this Reynolds number is close 
to the Reynolds number of the diffuser approach flow we were confident that turbulence 
modeling strategies that were successful for the square-duct flow would also likely be adequate 
for diffuser flow simulations. 



3. COMPUTATIONAL AND EXPERIMENTAL APPROACH 

3.1 Computational Methods 

For our simulations we employed two different numerical methods: 
(1) A high-order-accurate incompressible DNS code (for geometry 1) 
(2) A high-order-accurate compressible multi-domain finite volume code (for geometries 2 & 3) 

3.1.1 Method 1: Higher-Order-Accurate Incompressible Finite Difference Code 
For our Direct Numerical Simulations (DNS) of 3-D separation bubbles on a flat plate we 

employed a highly efficient and accurate incompressible Naviei—Stokes code originally 
developed for flat-plate boundary layer transition simulations [Meitz 2000] and later extended to 
generalized curvilinear orthogonal coordinates [Postl 2006]. 

3.1.1.1 Governing Equations 
In this code, the 3-D incompressible Naviet—Stokes equations are solved in vorticity-velocity 

formulation. The equations are non-dimensionalized using a reference velocity Uref (e.g. the 
freestream velocity) and a reference length Lref. By taking the curl of the momentum equations, 
which eliminates the pressure terms, the transport equation for the vorticity (in vector form) is 
obtained, 

dt v       ;   Re 

with the vorticity defined as 

aJ = -VxV. (3.2) 

A volume force F, can be added to the right-hand-side to introduce disturbances into the flow. 

From the vorticity a>, the velocity field V is obtained by solving a vector Poisson equation, 

V2F = Vx<y. (3.3) 

The velocity vector V has components in the streamwise, wall-normal, and spanwise direction 
(w, v, and w), and the components of the vorticity vector a> are defined as 

_dv    dw =dw_8u and _du _dv (3.4) 

^_&_"^' ay ~ dx    &' 6}:~~8y~~^c' 

3.1.1.2 Discretization 
For the time-integration of the vorticity-transport equations, a four-stage explicit 

Runge-Kutta scheme with fourth-order accuracy is employed. For the spatial discretization, 
fourth-order accurate compact finite differences are used in the streamwise and in the wall- 
normal direction. Assuming periodicity in the spanwise direction, a pseudo-spectral approach in 
z is used with a Fourier decomposition of the velocity and vorticity into finite sine and cosine 



series with k = [0 ... K\ Fourier components. For the flow variables u, v, and ox the Fourier series 
has the form 

d(x,y,z,t) = D^(x,y,t) + iDk(x,y,t)cos(ykz)-~iDk(x,y,t)sm(ykz), (3"5) 

with d= u,v, ox and Dk = if, V1, Qk. For the flow variables w, ax,, and o)y the Fourier series has 
the form 

d(x,y,z,t) = Dk-n(x,y,t) + t Dk(x,y,t)sia(ykz)+fd D
k (x,y,t)cos(yk z), (3"6) 

with d = w, ox,, coy and Dk = W*, Qk, Qk. The spanwise wave number, yk, is defined as 

yk = 2izkA=
k=l, (3.7) 

where %}~l is the spanwise wavelength of the lowest spanwise Fourier mode, which effectively 
is the domain width, L:, of the computational domain. In the Fourier sine and cosine expansions 
Eqs. (3.5) and (3.6), the two-dimensional flow component is represented by mode k = 0. The 
symmetric part of the three-dimensional flow field is represented by modes 1 < k < K, the 
asymmetric part by modes -K < k < -I. In all our present simulations we assumed spanwise 
symmetry, which halves the number of spanwise modes required but introduces slip walls atz = 
L: and L:a where w, ox,, ojy = 0. This confines the movement of streamwise structures in the flow 
by preventing them from meandering across the symmetry plane. 

A key component of the present code is a fast and parallelized multi-grid solver for 
computing the velocity-Poisson equations. At every computational step, disturbances at grid 
level in the vorticity components are filtered out using a fourth-order compact filter. This allows 
for simulations on grids that cannot resolve turbulent structures all the way down to the 
Kolmogorov length scale. 

3.1.1.3 Computational Setup 
At the inflow boundary, steady velocity and vorticity profiles are imposed. To prevent 

reflections from the outflow boundary at xout, the flow is relaminarized in a buffer domain 
starting at Xbuff using an approach similar to that proposed by Kloker et al. [Kloker 1993]. At the 
free stream boundary, ymax, the flow is assumed to be irrotational and all vorticity components 
and their derivatives are set to zero. Also, a Dirichlet boundary condition is applied for the wall- 
normal velocity. The wall-normal velocity was obtained from precursor calculations that are 
described in Section 4.1. At the wall, jy = 0, no-slip and no-penetration conditions are imposed. 
Numerous simulations with different domain sizes, grid resolutions, baseflow and forcing 
parameters, etc., have been performed over the course of the present research project. Details on 
the computational parameters for the different simulations are provided in Section 4. 



3.1.1.4 Disturbance Generation 
Disturbances are introduced through a blowing and suction slot on the flat plate. The slot is 

modeled by prescribing a wall-normal velocity distribution 

.(*) -   '(*)-:-/-   *"**!   ^3 vi."=^"sin(*-2 *-)* (3.8) 
Xs2       Xs\ 

on the wall for each spanwise mode k. The time-dependent amplitudes^*'of the spanwise 
modes are defined as 

Ai:i(t)=A^sm(2^rt+eir), (312) 

with frequency,/ , and phase angle, 0 . The freestream effect of the slot forcing was modeled 
assuming potential flow over an infinitely long flat plate with a velocity distribution at the wall 
that corresponds to the blowing and suction slot. Using a Green's function, the potential is given 
by 

W*y)=£ Jv„.(0iog[e -xf +/]#, (3 9) 

where xsi and xS2 are the downstream and upstream boundaries of the blowing and suction slot, 
respectively. The change in the freestream velocity and its derivative then become 

K^-sJ-W^^p*  and %^'ii}Mlt-Sl%dl-     (3'0) 
With this method, symmetric or asymmetric disturbances can be introduced at any downstream 
location. 

3.1.2 Method 2: Higher-Order-Accurate Compressible Multi-Domain Finite Volume Code 

3.1.2.1 Governing Equations 
The Favre-averaged compressible Navier-Stokes equations are solved in conservative form 

on structured grids. A variety of turbulence models was implemented for Reynolds-Averaged 
Navier-Stokes (RANS) calculations of turbulent flows. For the current investigations [Gross and 
Fasel 2008b, 2009a, 2010], the 1988, 1998, and 2006 versions of the k-(0 model by Wilcox 
[Wilcox 2006] were employed. The 1998 and 2006 versions allow for improved predictions of 
shear layers. The Menter shear-stress transport (SST) model [Menter 1994] which removes the 
k-co models sensitivity to the free-stream value of the turbulence specific dissipation [Menter 
1992], the k—s model [Jones, 1972], the Lam-Bremhorst low-Reynolds number k-e model [Lam 
1981], and the Spalart-Allmaras one-equation turbulence model [Spalart 1992] were considered 
as well. In the original formulations of the various turbulence models addressed above, the 
Boussinesq-approximation (in the following referred to as B-A) is employed for computing the 
Reynolds stresses, 

TIJ
T
 =-lpk5IJ+2Mr[siJ-

X-vk,5l^ (3.11) 

11 



where k is the turbulence kinetic energy, Sjj=\/2(iijj+up) and W,J=\/2(U,J-UJJ) are the strain and 
shear rate tensor, and 5y is the Kronecker symbol. Repeated indices indicate summations while 
commas in the subscript denote partial derivatives. The B-A assumes a linear relation between 
the strain tensor and the Reynolds stress tensor. The B-A can therefore be categorized as a linear 
eddy viscosity model (LEVM). Alternatively, a second-moment closure, the explicit algebraic 
stress model (EASM) in the form proposed by Rumsey and Gatski [Rumsey 2001], 

= --pkSIJ+2pT 'i 

f        1 > 
s.j ~^v*Aj + a2a4(SikWls+SjkWkl)-2a3a4 S.tS ik'-'kj -SklSU<5,j (3.12) 

can be employed. 
A large number of different hybrid RANS/LES models were proposed for closing the gap 

between RANS and LES. We considered the flow simulation methodology (FSM) [Speziale 
1997, Fasel et al. 2002] and the filter-based RANS (FBR) approach [Johansen et al. 2004]. For 
the flow simulation methodology (FSM) the turbulence model contribution is scaled by a 
"contribution function", f, which in the original formulation by Speziale is a function of the local 
grid spacing, A=max(Ax,Ay,Az), and the Kolmogorov length scale (the characteristic length scale 
of the dissipating eddies), 

k = 
v 

l 

3^ 

(3.13) 
Vc J 

Israel [2005] suggested that a third length scale, the "dissipation length scale" (the typical length 
scale of the stress-bearing motion), 

^ 
(3.14) 

which is larger than the integral length scale, Cnk3/2/£, should be considered. For/= 0 all scales of 
motion are resolved and the model contribution is zero; In the RANS limit for/= 1 the model 
contribution is 100% and all unsteady turbulent motion is modeled. Effectively, FSM simulations 
can be considered to be locally DNS, large eddy simulation (LES), or RANS depending on the 
local and instantaneous ratio of A/Z,*. 

Two alternatives were suggested: (1) Only the terms that "feed back" into the Navier-Stokes 
equations are scaled. The turbulence model is "dragged along" and influenced only indirectly 
since, as a result of the scaling, either the mean flow is changed or the flow becomes unsteady. 
(2) All turbulence model terms including those that feed back into the turbulence model 
equations itself are scaled. For the present results we employed approach (2). 

Different variants of the contribution function are available. For example, Zhang et al. [2000] 
proposed a modified Speziale contribution function, 

/ = 1 - exp 0.001 max 
(    A 

\ 
0,— -2 

I  4 /_ 
(3.15) 
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Alternatively, and this is the approach that we employed for the results shown here, the 
contribution function can be computed from the turbulence energy spectrum (Fig. 3.1). 

unresolved 
TKE.k,, 

10'1 10° 101 10* 103 

L, = 3 31k15/s lll = (r3lsf2i Ax 
length scale of stress Kolmogorov length scale local grid resolution 
bearing motion 

Fig. 3.1: Turbulence energy spectra. 

Estimates for the unresolved, ku, and total, k, turbulence kinetic energy can be obtained by 
integrating the turbulence energy spectrum, E(K), from Lk to LA and Lk to LE, e.g. 

2nlL„ 

k =    \E{K)dK. (3.16) 

The ratio of ku and k gives the contribution function, 

it 
(3.17) 

For L£ < Lk, f is set to 1. As E(K) we chose the von Karman [1948] energy spectrum. The length 
scales were computed as LE = f   LEU and Lk = f   Lku. 

For filter-based RANS (FBR) [Johansen et al. 2004] the RANS eddy viscosity is multiplied 
by 

/ = min 
L,s 

\ C — (3.18) 

where the filter width, LA, is fixed in the original formulation. Similar to Hajjawi et al. [2008] we 
decided to use a local filter width identical to the local grid line spacing. We also set C3 to 1. 

For both approaches, FSM and FBR, which are described in more detail in [Gross and Fasel 
2009a,b] we attempt to capture "backscatter". The term 
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f*Jdf      8/     df      df^ 
+ U — + V— + W- 

f \dt       dx      dy       dz 
(3.19) 

is added to the RHS of the pk-equation and subtracted from the RHS of the pe-equation. In 
addition, -pUi'(f,t+Ujfj) is added to the RHS of the momentum equations for ft + Ujfj < 0. 
Artificial velocity fluctuations, u,', are obtained from the synthetic turbulence model proposed by 
Batten et al. [2004] 

For the channel flow simulations the term, 

\pu2J-}- = ^-pur (3.20) 
2- L)h       L>h 

was added to the RHS of the x-momentum equation to compensate for the streamwise pressure 
drop. Here, Ub is the bulk velocity (mass flux divided by density and cross-sectional area). The 
hydraulic diameter, Dh = 4A/U, is computed from the channel cross-section. A, and 
circumference, U. For turbulent channel flow, the friction factor, f, can be obtained from 
empirical relations, such as the one given by Petukhov, 

./• = (0.791nReA-1.64)-2, (3.21) 

where the Reynolds number is based on bulk velocity and hydraulic diameter. The relationship 
between bulk velocity and mean friction velocity is, 

/ = 
^y 
K
U

»J 
(3.22) 

We also added volume forcing terms to the continuity and energy equations 

Pl+... = a(pre/-p) (3.23) 

(pe), + ... = apcv(Tref-T) (3.24) 

with a = 10"   to stabilize density and temperature for the channel flow simulations (we 
employed a compressible code). 

3.1.2.2 Discretization 
The governing equations are solved in curvilinear coordinates. For robustness (especially on 

highly distorted grids) a finite volume method is employed. The convective terms of the Navier- 
Stokes equations are discretized with a ninth-order-accurate upwind scheme based on a weighted 
essentially non-oscillatory extrapolation of the characteristic variables and the Roe scheme 
[Gross and Fasel 2002, 2008a]. We also considered the second-order-accurate symmetric total 
variation diminishing (TVD) scheme by Yee [1987]. This choice was made since according to 
Margolin and Rider [2002] certain second-order-accurate upwind schemes have similar 
properties as standard LES sub-grid models. The convective terms of the turbulence model 
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equations are discretized with a second-order-accurate discretization analogous to the symmetric 
TVD scheme by Yee [1987]. Fourth- and second-order-accurate discretizations, respectively, are 
employed for computing the Navier-Stokes viscous terms and the turbulence equations diffusion 
terms. An implicit second-order-accurate Adams-Moulton method is used for advancing the 
governing equations in time. The resulting system of equations is solved iteratively by a Newton 
iteration based on a line Gauss-Seidel algorithm. The convergence of the implicit method is 
monitored by considering the root mean square (RMS) of the residuals of all cells for each 
individual equation. For the time dependent results shown in this paper the equations were 
advanced to the next time step when all RMS residuals dropped below 0.05. The code was 
parallelized using the message passing interface (MPI) library. 

3.1.2.3 Inflow and OutflowCconditions 
We considered walls to be adiabatic. The turbulence kinetic energy, k, was set to zero at 

walls. For the k-co models the smooth wall boundary condition [Wilcox 2006], 

co = —-—'—r (3.25) 
Re2 pAy2 

was applied for w, where Ay is the distance from the wall to the center of the first cell away from 
the wall. The parameter N was set to 1600. This value guarantees that for near wall grid 
resolutions (in wall units) of y+ =1 the effective surface roughness k+ is less than 5, which 
corresponds to a hydraulically smooth surface. For the channel flow simulations periodicity 
conditions were applied in the streamwise direction. For the diffuser simulations, at the diffuser 
inflow the pressure was extrapolated and all other primitive variables were taken from a channel 
flow simulation. At the diffuser outflow a non-reflecting boundary condition [Gross and Fasel 
2007] was applied. 

3.1.2.4 Non-Dimensionalization 
All length scales were non-dimensionalized with the channel height, h, which for the square- 

duct is identical to the hydraulic diameter, Dh = 4A/U = 4h2/4h = h. Velocities were non- 
dimensionalized with the bulk velocity, Ub, based on the nominal given bulk Reynolds number, 

hydraulic diameter, and kinematic viscosity. Alternatively, the average friction velocity, uT, can 

be employed for non-dimensionalization. The desired bulk velocity in our square-duct flow 
simulations was Reb = 10,000. From Petukhov's relationship a friction factor of f = 0.031479 is 
obtained. The average friction velocity then becomes 

0.06273M, (3.26) 

and the Reynolds number based on average friction velocity and hydraulic diameter is ReT = 
627.3. With the average friction velocity, 

v+ = y^L = Re 1- = 627.3^, and (3.27) 
», A A 
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u*mu_m^ELJL.i5M— (3.28) 
Mr     Rer uh uh *b 

are obtained. Viscosities were normalized with the reference dynamic viscosity. Turbulence 
kinetic energy and Reynolds-stresses were non-dimensionalized with the bulk velocity squared. 

3.1.3 Post-Processing Tools 

3.1.3.1 Vortex Identification 
For visualizing vortical structures we employed the Q-criterion by Hunt [1988], 

Q=l/2WijWij-\/2SljSlj, (3.29) 

which identifies vortical structures by representing regions inside the flow where rotation, W^ 
dominates strain, Sy. 

3.1.3.2 A uto-Correlation 
Discrete time-dependent velocity data, un, can be auto-correlated, 

*0») = 4^EfcX«Wi) (3.31) 

for m = 1,...,N where u' = u - u is a disturbance velocity, 

<r2=t(un)
2 (3-32) 

is the variance, and the index n + m - 1 is taken modulus N. 

3.1.3.3 Energy Spectrum 
Energy spectra, 

4' 
E{Km) = ^LdV!L' (3'33) 

dm 

can be computed from velocity data, un, where 
2  N 

a»=T7ZM«C0S(^'») <3-34) 
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11=1 N 

For a linear wave number (K = 2n/At) distribution 

2   N 

bn,=—yZUnS'm(^Jn)- (3-35) 

is obtained. 

^=*"i+T^—r(*2-*i). (3-36) M-l 

</*-„,    /CJ-AT, 

<fri       A/-1 

17 

(3.37) 



3.2 Experimental Facility 

3.2.1 Water Tunnel 

The Hydrodynamics Laboratory of the Department of Aerospace and Mechanical 
Engineering at the University of Arizona is a state-of-the-art research facility that houses three 
water tunnels. 

HoMycomb MOttn Driv« 

TurtMnj vtntt / Contraction, 10:1 30 TMt MCOOfl 

' 
15 m 

- 

Fig. 3.2: Sketch of closed water tunnel at the Hydrodynamics Laboratory at the Aerospace and 
Mechanical Engineering Department. 

Our experiments were conducted in the "high-speed" closed surface water tunnel. This tunnel 
has a test section with dimensions 0.5 x 0.7m. The maximum flow velocity in the test section is 
1.34 m/s. A side view of the tunnel is given in Fig. 3.2. A 7.5 kW electric motor drives a four- 
bladed turbine. The pitch of the turbine blades can be adjusted for altering the velocity range. 
The water is fed back through a pipe in the basement. A 0.2m wide honey comb section is used 
for conditioning the flow (flow straightening, turbulence management). Some key parameters are 
listed in Tab. 3.1. A chart showing the velocity range for two different turbine blade pitch angles 
is provided in Fig. 3.3. 

Test Section Size 4.5 m x 0.5 m x 0.7 m 
Wlocity Range slow 0.03 m/s - 0.58 m/s 
Velocity Range high 0.08 m/s- 1.34 m/s 
Water Volume 5C.000 liters 

Tab. 3.1: Specifications of closed water tunnel. 
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Fig. 3.3: Tunnel speed over turbine revolutions per second for different turbine blade pitch angles. 
Velocity data was obtained from PIV measurements. 

3.2.2 Flow Diagnostics 

In general, dye flow visualization is less involved and was therefore employed for fast and 
qualitative flow diagnostics, which provided considerable insight into the fluid dynamics. We 
utilized both, red and blue dye, which was delivered into the flow through holes, and 
phosphorescent dye, which was injected with a needle. The advantage of phosphorescent dye is 
that it allows for flow visualizations in a plane that is illuminated by a laser. 

light sheet 

interrogation 
window image 

plane 

Fig. 3.4: Sketch of PIV system. 
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We also employed Particle Image Velocimetry (PIV) for quantitative flow measurements. In 
general, PIV requires a high power laser, an optical arrangement to widen the laser beam into a 
light sheet (cylindrical lens), and a camera (Fig. 3.4). Velocity fields are extracted from the 
movement of particles seeded into the flow. The particles are almost neutrally buoyant, and are 
therefore generally assumed to be accurately convected by the flow. The measurement area 
within the flow field is defined by the position of a laser sheet and the optical opening angle of 
the cameras. Using two short duration laser pulses, a double-exposure of the flow field is 
obtained. The velocity vectors are extracted by performing a mathematical correlation analysis of 
the two separate frames. The PIV interrogation process is repeated until all required velocity 
information is extracted from the snapshots. 

Fig. 3.5: Photo of PIV system including cameras, laser, PIV computer and traverse system on the left. 
Seeded flow and laser beam with displacement body in test section on the right. 

A PIV system manufactured by LaVision was employed for our investigations (funded by a 
DURIP grant from ONR). This system consists of a double pulsed Nd:YAG laser (class 4), two 
high quality digital cameras and a Dell quad-core computer for post-processing (Fig. 3.5). The 
Imager ProX2M cameras with Nikon lenses have a maximum frame rate of 30Hz at full 
resolution. We designed and built a traverse system that uses computer-controlled stepper motors 
for moving the laser and cameras in downstream direction. The traverse system allows us to map 
out the entire volume which contains the three-dimensional separation bubble in fine slices. For 
the results shown in this report the laser beam was pointed at a mirror located in the rear of the 
test section for generating laser sheets in spanwise planes with a thickness of approximately 
2mm. Two cameras are used to detect the particle movements within the plane. Hollow glass 
spheres with a diameter of approximately 10 microns, which are neutrally buoyant, were used as 
tracer particles. 
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4. SEPARATION BUBBLE: DIRECT NUMERICAL SIMULATIONS 

The objective of our direct numerical simulations (DNS) and water tunnel experiments was 
to investigate in detail the structure and dynamics of three-dimensional (3-D) separation bubbles. 
In this section, results from our simulations are presented. The water tunnel experiments are 
discussed in section §5. 

displacement body (3-d) 

computational domain for DNS buffer   ! 

xl flat plate 

Fig. 4.1(a): Schematic of set-up with displacement body and computational domain. 

Fig. 4.1(b): Schematic of computational domain for DNS. 

4.1 Precursor Calculations 

Our computational approach involves two steps: 
1. A precursor calculation of the inviscid flow around the displacement body. 
2. A high-resolution Direct Numerical Simulation (DNS) of the separated flow region on 

the flat plate with freestream boundary conditions that are extracted from the precursor 
calculation. 

The purpose of the precursor calculations is to obtain freestream boundary conditions for the 
highly resolved DNS and to study the effect of the geometric parameters on the potential 
flowfield. The calculations are based on the method described by Zedan and Dalton [ 1978] for 
computing the potential flow around a body of revolution with arbitrary shape. Corresponding to 
the body shape, linear source and sink distributions on the axis of rotation are determined and 
superposed on a uniform flow. The source and sink distributions are found by solving a system 
of linear equations, which is obtained from the conditions that (i) the streamfunction is zero at a 
certain number of control points on the body surface, and (ii) the net mass flux of the entire 
source and sink distribution is zero. To account for the presence of the flat plate, a mirror image 
is generated and added to the original solution. The change of the original body shape due to the 
mirroring was found to be negligible. For validation purposes, the wall-normal velocity profiles 
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obtained with this procedure were compared to results of inviscid and viscous simulations of the 
entire flow field (flat plate and displacement body) using the commercial Navier-Stokes solver 
Fluent. The profiles extracted from the potential flow field and from the inviscid Fluent 
simulations agree very well and are also in very good agreement with the profiles extracted from 
the viscous Fluent simulations (Fig. 4.2). Similarly, the influence of "neighboring" displacement 
bodies due to the periodic boundary condition of the DNS was accounted for by repeating and 
mirroring the solution in the spanwise direction. 

1    02- 
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R«„ = 2.500. viscous (Fluent) 
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(a)  Profiles of wall-normal velocity in the mid-span 
plane. 

(b) Profiles of wall-normal velocity in spanwise direction 
at the downstream location of the suction peak. 

Fig. 4.2: Profiles of wall-normal velocity at wall-normal location ymax= 0.048m, extracted from potential 
flow and Fluent precursor calculations for different Reynolds numbers Ren (for the baseline case with 
H=lm). 

4.2 Simulation Setup 

The computational domain for the high-resolution DNS is shown in Fig. 4.1b. The inflow 
boundary is located at a distance xi=0.1m from the leading edge of the flat plate. The domain 
extends a distance ymax from the surface of the flat plate. It spans from the midspan plane at z = 0 
to z = zmax. For all simulations flow symmetry with respect to the body center was assumed. In 
addition, the flow was assumed to be periodic in the spanwise direction. The distance of the 
displacement body from the flat plate leading edge was s = 0.25m, or 0.15m measured from the 
inflow boundary of the computational domain. The spanwise variation of the freestream velocity 
at the inflow boundary due to the upstream influence of the displacement body was less than 
three percent. The streamwise domain length including the outflow was 0.640m for the unsteady 
cases and 0.768m for the steady cases. The outflow boundary was thus at X2 = 0.740m and 
0.868m, respectively. Normalized with the displacement body diameter, the streamwise extent of 
the computational domain measured from the center of the displacement body was 1.5D in 
upstream direction and 3.9D in downstream direction. 

The height ymax of the computational domain was varied between 0.048m and 0.068m. To 
investigate the influence of the spanwise domain width on the flow (Sec. 4.3.1), domain widths 
from 0.24m to 1.28m, i.e. from W = 1.2 to W = 12.8 body diameters, were investigated. 
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The grid for the steady simulations (i.e. for simulations where the Reynolds number is low 
enough so that the flow remained steady) had a resolution of lxlO~3m in the streamwise 
direction. In the wall-normal direction, 129 or 161 points were used depending on ymax with a 
mild exponential grid point clustering near the wall to adequately resolve the boundary layer on 
the flat plate as well as the developing shear layer and vortices. The stretching was adjusted such 
that the near wall resolution for the different ymax was similar for the different cases and about 
half of the grid points were located in the lower 30% of the domain. The wall normal grid 
resolution at the wall was about 1.2xl0~4m. The boundary layer and separation bubble were 
resolved with 30-40 points. A higher-resolution grid was obtained by doubling the number of 
grid points in both the streamwise and the wall-normal direction, resulting in a streamwise 
resolution of 0.5><10-3m and a near-wall grid-line spacing of 0.6x10_4m. In the spanwise 
direction, between 61 and 321 modes were employed, which corresponds to 193 and 1025 
collocation points, respectively, across the full physical spanwise domain width. This results in a 
spanwise resolution of 1.25x 10~ m for the lower-resolution grid and 0.625x 10_3m for the higher- 
resolution grid. For the unsteady simulations, we utilized the higher-resolution grid with 257 
points in the wall-normal, 1281 points in the streamwise and up to 641 modes in the spanwise 
direction (337 million points total). The minimum grid resolution in wall units in the wake was 
x+=13,y+~1.9,andz+ = 9. 

4.3 Results 

To gain a basic understanding of the topology of the 3-D separation, several steady flow 
cases were investigated first. In this chapter, the flow topologies for these steady flow cases as 
well as for the time-averaged flowfields obtained from simulations at larger Reynolds numbers, 
where the flow is unsteady, are presented. The unsteady features of the latter are described in 
Sec. 4.4 and the flow structures for all cases are discussed in more detail in Sec 4.5. 

The flow topologies were analyzed based on the limiting streamline pattern on the flat plate 
and streamlines in the symmetry plane (Figs. 4.4-4.8). The limiting streamlines were overlayed 
with contours of spanwise vorticity on the plate and streamwise velocity in the symmetry plane 
(z = 0) to indicate the reverse flow region, which corresponds to negative values of vorticity and 
streamwise velocity, respectively. As suggested by Pauley (1994), the limiting streamline 
patterns were computed from the wall-tangential velocity components at the wall nearest grid 
points. In general, this worked very well and the constructed streamline patterns are in very good 
agreement with the flowfield as indicated by the wall vorticities. 

4.3.1 Effect of Domain Width 

As discussed in Sec. 3.1.1, in the DNS code periodicity in the spanwise direction is assumed. 
Therefore, the first step was to analyze the effect of the domain width (W) on the potential flow 
field (Fig. 4.3) and on flow separation (Fig. 4.4). The spanwise periodicity implies that the 
simulated scenario is not a single separation bubble, but an infinite row of separation bubbles, or, 
in other words, an infinite row of displacement bodies. The test section side walls of the water 
tunnel can also be regarded as symmetry planes, which for potential flow can be modeled by 
adding images of the displacement body in the spanwise direction. The spanwise periodicity in 
the DNS is therefore consistent with the accompanying experiments. A domain width of w = 
0.64m or W = 6.4 (in displacement body diameters) was chosen as the baseline case, as this is 
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close to the spanwise width of the test section in the water tunnel (Sec. 3.2) and because this 
results in an inviscid pressure distribution on the flat plate that closely resembles that for a single 
displacement body (Fig. 4.3). 

The domain width mostly affects the spanwise Cp gradient with little effect on the streamwise 
pressure gradient (Tab. 4.1), and, therefore, allows us to investigate the influence of the spanwise 
pressure distribution on the separation topology. 
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(a) Effect of distance to "neighboring" displace- 
ment bodies on the spanwise Cp distribution. 
Profiles shown arc plotted at the downstream lo- 
cation of minimum Cv. 

(b) Illustration of the shape of Cp for 
reference case 
d = 0.1m,H = 1.0, U' = G.4 

Fig. 4.3:  Non-dimensional, inviscid pressure distribution Cp on flat plate. 

The analysis of the limiting streamline patterns (Fig. 4.4) reveals that the width and, most 
importantly, the topology of the separation are greatly affected by the spanwise extent of the 
domain. For all domain widths from W = 2.4 to W = 6.4, the topology of the flow for Reo = 
7,500 and H = 1.0 shows one saddle point associated with flow separation at the upstream end of 
the separation bubble. From this saddle point the line of primary separation leads to a focus on 
either side of the symmetry plane and a saddle point of attachment at the downstream end of the 
separated region (Figs. 4.4a,b). 
When the domain width is increased, the saddle point of attachment splits in two. These two 
separate saddle points move away from the symmetry plane, where a node now replaces the 
original single saddle point. Along with this, a region develops adjacent to the symmetry plane 
inside and downstream of the separation bubble, where the limiting streamlines originate from 
this node of attachment (Figs. 4.4c,d). For the two widest domains that we considered, the 
topology of the separation bubble remains unchanged. This is, because the inviscid pressure 
distribution on the flat plate (Fig. 4.3a) for the maximum simulated domain width W = 12.8 is 
essentially identical to the pressure distribution for a domain with infinite spanwise extent. Very 
similar results are obtained for a spanwise domain width of W = 9.6. Although the difference in 
the spanwise inviscid pressure distribution for W = 2.4 and W = 6.4 is much larger than the 
difference seen for W = 6.4 and W = 9.6 (Fig. 4.3a), the change in topology is less significant for 
W = 2.4 and W = 6.4 than for W = 6.4 and W = 9.6. The streamlines in the symmetry plane 
exhibit the same general pattern for all cases and are not affected by the domain width. 
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index     H       W       Rc„      Rc0,scp    ACp,im,/A.Y    AC,,nv/AZ 
i 1.00 3.2 7..1(H) 102 0.197 
ii 1.00 4.8 7.500 100 0.198 
iii 1.00 6.4 7,500 99 0.197 
iv 1.00 9.6 7.500 98 0.200 
V 1.00 12.8 7.500 98 0.199 
vi 1.02 6.4 7.500 103 0.185 
vii 1.05 6.4 7.500 107 0.167 
viii 1.10 6 1 7,500 117 0.142 
ix 1.15 6.4 7.500 — 0.121 
X 1.00 G 1 2.500 0.197 
xi 1.00 Ci 1 5.000 88 0.197 

Li 
0.118 
0.096 
0.076 
0.053 
0.040 
0.071 
0.065 
0.057 
0.049 
0.076 
0.076 

xii      1.00    6.4     15.000      132 0.197 0.076 

index L bubble W bubble HlrnW, Topology 
i 1.49 0.52 0.044 2 SP. 2 F 
ii 1.53 0.54 0.059 2 SP. 2 F 
iii 1.58 0.58 0.063 2 SP. 2 F 
iv 1.60 0.64 0.065 3 SP. 2 F. 1 N 
V 1.61 0.68 0.065 3 SP, 2 F, 1 N 
vi 1.26 0.52 0.045 2 SP, 2 N 
vii 1.14 0.50 0.037 1 SP, 1 N 
viii 0.62 0.30 0.010 1 SP. 1 N 
ix __ no separation 
X — — — no separation 
xi 0.81 0.38 0.028 1 SP. 1 N 
xii s=1.82 0.88 0.069 3 SP. 2 F. 1 N 

Tab. 4.1: Summary of simulation parameters (top) and separation bubble characteristics (bottom; SP 
saddle point, F = focus, N = node). 

43.2 Effect of Displacement Body Distance from Flat Plate 

The distance of the displacement body from the flat plate affects the pressure distribution on 
the flat plate. While the spanwise domain width mostly affects the spanwise pressure 
distribution, the parameter H (defined as the displacement body distance from the flat plate) was 
found to affect both the streamwise and spanwise pressure gradient. 

For the simulations shown in Fig. 4.5, the displacement body was successively moved farther 
away from the flat plate, thus weakening the pressure gradients acting on the boundary layer on 
the flat plate. When comparing the separation topology for increased distances H relative to the 
reference case with H = 1.0 in Fig. 4.4b (Reo = 7, 500, W = 6.4), it can be seen that as H is 
increased, the saddle point of reattachment remains in the symmetry plane, whereas the saddle 
point of separation is replaced by a node of separation and the two foci vanish. This topology 
appears to remain stable until the pressure gradient becomes too weak and the separation 
disappears altogether (Fig. 4.5d). 

A closer look at the streamline patterns for H = 1.02 and H = 1.05 (see Fig. 4.6) reveals a 
slight but important difference, which is seen most clearly in the color contours of streamwise 
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vorticity near the line of separation. For H = 1.05 the line of zero streamwise vorticity (indicated 
by the white color) is found downstream of the line of separation, whereas for H = 1.02 it is 
located upstream of the line of separation. This difference is crucial, as it indicates that for H = 
1.02 the streamlines converging on the line of separation lead away from the symmetry plane 
(same as for H = 1.0), while for H = 1.05 they point towards the symmetry plane. Consequently, 
the singular point in the symmetry plane from which the line of separation emanates, must be a 
saddle point for H = 1.02, and a node for H = 1.05. Since the point of attachment is also clearly a 
saddle point (in both cases), there must be nodes or foci at the outer ends of the line of separation 
for H = 1.02, according to the topological rules first proposed by Lighthill [1963]. 

As nothing suggests a "spiral" motion close to the end of the line of separation, the points are 
identified as a pair of nodes. In the cases (with separation) where no foci are present (Figs. 4.5a- 
c), the line of separation has no definite end point. (This fact necessitates an alternative definition 
for the width of the separated flow region [Jacobi et al. 2008]). The lack of definite end points of 
the line of separation also represents a unique property of 3-D separation called "open 
separation", which is discussed in more detail in Sec. 4.3.4. The general pattern of the 
streamlines in the symmetry plane is again not affected by the changes seen in the limiting 
streamline pattern on the flat plate. 

1 Upon close examination of the streamlines for H = 1.02, one can see that near the outer end of the 
line of separation the streamline direction is not in agreement with the flow direction suggested by the 
wall-vorticity. The streamwise vorticity indicates flow away from the symmetry plane (red), where the 
streamlines turn towards the symmetry plane. The line of separation still ends in a node, as indicated both 
by the streamline behavior and the wall-vorticity. The discrepancy can be attributed to the fact that the 
streamline pattern was computed from flow data at a finite distance from the plate, which may differ from 
the flow field "right on " the surface. Such a difference has been observed for this case only. 
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(a) Ren = 7,500, W = 3.2, H=1.0 

02        02S        03        091 

(b) Ren = 7,500, W = 6.4, H= 1.0 

(c) Ren = 7,500, W = 9.6, H = 1.0 (d) Ren = 7,500, W = 12.8, H = 1.0 

Fig 4.4: Effect ofspanwise domain width, W, on separation topology. 
Shown are streamline patterns and color contours of streamwise velocity in the symmetry plane 
(z=0, on top), and limiting streamlines and color contours ofspanwise vorticity on the plate (y=0, 
below). Blue indicates reverse flow. 
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(a) Re,) = 7,500, W' = 6.4, H= 1.02 (b) ReD = 7,500, W = 6.4, H= 1.05 

(c) ReD = 7,500, W = 6.4, H=1.10 (d) ReD = 7,500, W = 6.4. H = 1.15 

Fig 4.5: Effect of distance of displacement body from flat plate, H, on separation topology. 
Shown are streamline patterns and color contours of streamwise velocity in the symmetry plane 
(z=0, on top), and limiting streamlines and color contours of spanwise vorticity on the plate (y=0, 
below). Blue indicates reverse flow. 
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Fig 4.6: Enlarged views of the separated region. Shown are limiting streamline patterns overlayed with 
color contours of streamwise vorticity on the flat plate (y = 0). Blue indicates flow going "upwards" (in 
positive z-direction), red indicates flow going "downwards " (in negative z-direction). 

4.3.3 Effect of Reynolds Number 

A wide range of Reynolds numbers Reo (based on displacement body diameter and 
freestream velocity) between 2,500 and 30,000, were investigated for a fixed spanwise domain 
width W = 6.4 and distance of the displacement body from the flat plate H = 1.0. The separated 
flow is steady up to a Reynolds number of 10,000, it is unsteady for Rep = 11,000, 15,000, and 
30,000. For the unsteady cases, the flow topologies were deduced from the time-averaged 
flowfields. 

Fig. 4.7 shows the streamline pattern in the symmetry plane and on the flat plate for the 
steady cases. For Reo = 5,000 (Fig. 4.7b) the flow topology is the same as for some of the cases 
where the height of the displacement body was increased (Figs. 4.5b,c). The limiting streamline 
pattern on the flat plate only contains one node of separation and one saddle point of 
reattachment, and the line of primary separation shows the same "open separation behavior" as 
described in Sec. 4.3.2 for H - 1.05. (For ReD = 2,500 and H = 1.0, as well as for ReD = 7,500 
and H = 1.15, the flow did not separate from the flat plate.) 

The streamline patterns for increased displacement body distances H and decreased Reynolds 
numbers Reo are similar. Varying the Reynolds number Reo, however, does not directly affect 
the non-dimensional inviscid pressure distribution Cp jnv, as it is independent of the freestream 
velocity. Thus, for reproducing a particular experiment, both Reynolds number and Cp have to be 
matched. Nevertheless, the simulations show that it is possible to—at least qualitatively— 
duplicate the flow behavior at a different Reynolds number, if the Cp distribution imposed on the 
flat plate is adequately adjusted. 

For the unsteady cases, the time-averaged flowfields shown in Fig. 4.8a-c indicate topologies 
that to some extent differ from the reference case with Reo = 7,500 and W = 6.4, but also share 
some commonalities with the Reo = 7,500 cases with large domain widths: For example, the line 
of primary separation connects a saddle point of separation with two focal points, although the 
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foci are much stronger for the higher Reynolds numbers. Also, the width of the bubble, as 
determined by the spanwise extrema of the line of primary separation, is considerably larger. 
While the saddle point of separation is seen to move upstream with increasing Reynolds number, 
the location of the foci remains almost unchanged, compared to the reference case. 

The attachment regions of the time-averaged flowfields exhibit a topology that is not easily 
interpreted, but qualitatively similar. A node of attachment is located in the symmetry plane with 
a saddle point on either side (Fig. 4.8a-c). The node of attachment is necessitated by the theorem 
governing the number of singular points, provided one accepts the notion that the singular points 
away from the symmetry plane are saddle points [Lighthill 1963]. 

Compared to the topology of a separation bubble at Reo = 7,500 (W = 12.8, Fig. 4.4d), which 
displays an equal number and arrangement of singular points, the node of attachment in the 
unsteady cases appears to be rotated by 90 degrees, and the streamline patterns near the 
symmetry plane and downstream of the point of reattachment differ. Figure 4.8 also shows that 
at least one line of secondary separation emanates on either side of the symmetry plane from the 
saddle points downstream of the separation bubble. Note that for all the cases which we 
investigated this is the only indication of a secondary separation. 

The difference in the separation topology between the unsteady and steady cases, which 
shows up in the streamline patterns in the symmetry plane, can also be seen in Fig. 4.10. 
Whereas for the steady reference case the shear layer in the symmetry plane stays detached from 
the wall (Fig. 4.10a), for the unsteady cases the flow reattaches for the time-averaged flow field 
(Fig. 4.10b-d). This is discussed in more detail in Sec. 4.4. 
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(a) ReD = 2,500, W = 6.4, H= 1.0 (b) Ren = 5,000, W = 6.4, H = 1.0 

EE       ^T^^ 
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(c)Re„ =7,500, W = 6.4, H = 1.0 (d) Re» = 10,000, W = 6.4, H= 1.0 

Fig 4.7: Effect of Reynolds number ReD on separation topology (steady cases). 
Shown are streamline patterns and color contours of streamwise velocity in the symmetry plane 
(z=0, on top), and limiting streamlines and color contours ofspanwise vorticity on the plate (y~0, 
below). Blue indicates reverse flow. 
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(a) Re,> = 11,000, W = 6.4, H = 1.0 (time-average) (b) ReD = 15,000, W = 6.4, H = 1.0 (time-average) 

x[m] • •! 

(c) Re„ =30,000, W = 6.4, H = 1.0 (time-average) (d) ReD = 15,000, W= 6.4, H = 1.0 (instantaneous) 

Fig 4.8: Effect of Reynolds number Re,> on separation topology (unsteady cases). 
Shown are streamline patterns and color contours of streamwise velocity in the symmetry plane 
(2=0, on top), and limiting streamlines and color contours ofspanwise vorticity on the plate (y=0, 
below). Blue indicates reverse flow. 
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4.3.4 Flow Topology 

Foci in the limiting streamline patterns are the roots of so-called "horn vortices", as described 
in Sec. 1. The topologies observed for H = 1.0 and Reynolds numbers greater than 5,000 contain 
a pair of foci at either end of the line of separation. It is important to point out that this is the case 
for both, the steady and unsteady cases. Furthermore, for all cases that we investigated the 
streamline pattern in the symmetry plane displays vortical structures with reverse flow near the 
surface. 

Insight into the interaction between the two horn vortices associated with the foci on the flat 
plate and the spanwise vortex associated with the reverse flow in the symmetry plane can be 
gained from 3-D streamlines (Fig. 4.9a,b). Fig. 4.9b also includes a visualization of the vortex 
core, which we extracted using the method of Kenwright and Haimes [1997]. The vortex core 
extends from the foci upwards and towards the mid-span plane. Judging from the visualizations 
in Fig. 4.9, the horn vortices appear to connect with the spanwise vortex. The 3-D streamlines 
exhibit a strong "swirling motion" induced by the horn vortices and also illustrate how the flow 
is ingested on the sides and then ejected near the top of the separation bubble close to the 
symmetry plane. 

When analyzing the flowfield in cross-flow planes at different downstream locations, no 
streamwise vortical structures could be identified in the separated region. However, as shown in 
Fig. 4.9c, the velocity vectors at locations downstream of the separation bubble seem to indicate 
the existence of a pair of streamwise vortices close to the surface. 
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(a) Perspective view of 3-D streamlines and color contours ofspanwise vorticity on the plate obtained 
from time-averaged flow data for Ren = 15,000, W = 6.4, and H = 1.0 (blue indicates reverse flow). 

(b) Perspective view of 3-D streamlines and color contours ofspanwise vorticity on the plate for 
Ren = 7,500, W = 12.8, and H = 1.0 (steady; blue indicates reverse flow). The green line represents 
the vortex core [Kenwright & Haimes 1997]. 
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(c) Cross-flow visualization for Rep = 7,500, W = 12.8, and H = 1.0 downstream of separated region 
at x = 0.6m looking downstream. Velocity vectors and color contours of streamwise vorticity (red - 
counter-clockwise rotation, blue - clockwise rotation). 

Fig 4.9: Flow visualizations. Cross-flow planes are colored with isocontours of 
streamwise vorticity (red - counter-clockwise rotation, blue - clockwise rotation). 
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4.4 Results: Unsteady Separation Phenomena 

Fig. 4.10 shows isocontours of spanwise vorticity in the mid-span plane, for the time- 
averaged flowfield of the unsteady cases and for one exemplary steady case (Reo =10,000). For 
all steady cases, the separated shear layer does not reattach to the flat plate. For the unsteady 
cases, however, the shear layer reattaches in the mean. Another interesting observation is that as 
the Reynolds number is increased, the reattachment point moves upstream, resulting in a gradual 
reduction of the length of the separation bubble. A possible explanation is provided by Fig. 4.11, 
which shows instantaneous visualizations of the spanwise vorticity in the mid-span plane for the 
unsteady cases. The separation bubble sheds spanwise vortical structures, which break up into 
smaller scale structures, leading to transition, and eventually reattachment in the mean. These 
structures are likely a consequence of hydrodynamic instabilities of the flow and thus highly 
dependent on the flow conditions. As the Reynolds number is increased from 11,000 to 30,000, 
the separated boundary layer "rolls up" earlier and the flow transitions farther upstream, resulting 
in a shortening of the separation bubble. With increasing Reynolds number, the size of the 
smallest structures is reduced, as the turbulent energy cascade extends over a larger wave 
number range. In addition, the wake is seen to spread more quickly in the spanwise direction. 
The question whether the primary instability is convective or absolute has yet to be addressed. 
Transition not only results in an earlier closing of the separation bubble but also affects the 
instability mechanisms itself, since the time-average or base flow is altered. In summary, the 
complicated interplay between separation and transition determines the separation bubble 
characteristics. 

Wake visualizations are provided in Fig. 4.12, where isosurfaces of the Q vortex 
identification criterion [Hunt et al. 1988] are shown. Strong coherent structures which propagate 
in downstream direction can clearly be identified. The structures have a strong periodicity in the 
streamwise direction, even for Reo = 30,000. Similar structures were observed for two- 
dimensional separation bubbles (e.g. Postl 2005). These large-scale spanwise coherent structures 
are mainly responsible for the transport of high-momentum fluid from the freestream towards the 
wall, which ultimately results in reattachment of the flow. 

35 



(a)ReD = 10,000 (steady) 
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(b) ReD =11,000 (time-average) 
•2.0 0.0 2.0 4.0 6.0 8.0 
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Fig 4.10: Comparison ofspanwise vorticity in the mid-span plane for steady and unsteady 
separation (for the latter obtained from the time-averaged flow data; red - counter-clockwise 
rotation, blue - clockwise rotation). 
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Fig 4.11: Comparison of instantaneous spanwise vorticity in the mid-span plane for cases with 
unsteady separation (red - counter-clockwise rotation, blue - clockwise rotation). 
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(a) Re,> = 11,000 (Q= 1000) 

(b)ReD = 15,000 (Q=6000) 

(c) ReD = 30,000 (Q=6000) 

Fig 4.12: Visualization of vortical structures in the wake of the separation bubble. Shown are 
isosurfaces of the Q vortex identification criterion. 
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4.3.6 Comparison to Two-Dimensional Separation Bubbles 

Although the visualizations of spanwise vorticity in the symmetry plane provided in Fig. 4.10 
are reminiscent of similar visualizations for two-dimensional separation bubbles, the streamline 
patterns in the symmetry plane (Figs. 4.4-4.8) are evidence that no closed recirculation region 
exists for the steady scenarios that we investigated. The fluid entrained into the separation bubble 
from the sides is ejected at the top of the bubble. This demonstrates a fundamental difference 
between two- and three-dimensional separation bubbles. For two-dimensional bubbles, the 
separated boundary layer must eventually reattach, thus forming a closed recirculation region. 
However, in three dimensions, the attached flow downstream of the separated region does not 
require a closed recirculation in the symmetry plane, as fluid may enter the reverse flow region 
from the sides. For the steady separation scenarios the dividing streamsurface originating from 
the line of primary separation never reattaches (within the computational domain). Rather, the 
attached flow downstream of the separated region consists of fluid that is being entrained from 
the sides. However, in the unsteady cases depicted in Fig. 4.1 Oc-d, the shear layer of the time- 
averaged flow field reattaches just as for a two-dimensional separation bubble. This may be a 
consequence of the large-scale, unsteady spanwise coherent structures, as discussed in Sec. 4.4. 

4.3.7 Comparison to Flow over Hemisphere-Cylinder 

The wall skin-friction line topology suggested by Tobak and Peake [1979] for the separation 
bubble at the nose, or "nose bubble" of a hemisphere-cylinder at low to intermediate angles of 
attack is depicted in Fig. 4.13. It features a saddle point of separation from which a separation 
line leads to a pair of focal points. Two saddle points and a node of attachment in the symmetry 
plane are seen in the rear of the bubble. The foci are the roots of two "horn vortices. Lines of 
secondary separation emerge from the saddle points at either side of the symmetry plane and 
extend downstream. 

Our results for the unsteady cases (Fig. 4.8) are similar to the limiting streamline topology 
proposed by Tobak and Peake for the hemisphere-cylinder, including the secondary separation. 
For the steady cases, only the topologies for W = 12.8 and W = 9.6 (Fig. 4.4c,d) feature the same 
singular points. Both cases, however, lack any secondary separation. 

The cross-flow pattern reported by Hsieh and Wang [1996] for flow over a hemisphere- 
cylinder (Fig. 4.14) features two streamwise recirculation regions downstream of the nose bubble 
that can be associated with the cross-flow component of the approach flow. These recirculation 
regions are similar to those seen in our simulations of 3-D separation bubbles (Fig. 4.9). 
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Fig. 4.13: Skin-friction line topology for flow over hemisphere cylinder [Tobak and Peake 1979]. 

(ft) 

Fig. 4.14: Cross-flow visualizations for flow over hemisphere-cylinder [Hsieh and Wang 1996]. 
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5. SEPARATION BUBBLE: WATER TUNNEL EXPERIMENTS 

5.1 Experimental Setup 

In parallel with the numerical investigations, we conducted water tunnel experiments for the 
same geometry. We considered Reynolds numbers between Reo= 5,000 and Reo=l5,000 based 
on the diameter of the displacement body D. A schematic of the experimental setup is provided 
in Fig. 5.1. Boundary layer suction was applied on the surface of the displacement body to 
prevent flow separation on the body itself. 

SIDE VIEW 

D*pl»c*m*nt Body 

Flat plate 

FLOW TOP VIEW 

Fig. 5.1: Sketch of experimental setup showing displacement body, separation bubble and stereo PIV 
equipment (not to scale). 

5.1.1 Exploratory Experiments 

First, a preliminary experimental setup was developed for some exploratory experiments. In 
order to speed up design and construction, it was decided to construct the three-dimensional 
displacement body from materials that were already available in the lab (Fig. 5.2). This allowed 
us to quickly set up and run our experiments and obtain flow visualizations using dye injection to 
get a first glance at three-dimensional separation bubbles. Based on these observations, we 
proceeded with the design of an advanced and accurate displacement body with improved 
boundary layer suction. 
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Fig. 5.2: Preliminary displacement body. Without (left) and with boundary layer suction (right). 

5.1.2 Axisymmetric Displacement Body 

The displacement body was built from a fiberglass shell. A negative mold was generated 
from a positive model, which had been fabricated from aluminum (Fig. 5.3). The final fiberglass 
displacement body was obtained using the negative molds (Fig. 5.4). Both, displacement body 
and flat plate were painted in matte black to reduce glare during the PIV measurements. To 
prevent separation from the displacement body, boundary layer suction was applied. The suction 
holes had a diameter of 1mm. Gravity forced suction was generated by a long pipe that lead to 
the basement of the building. This method was preferred over a suction pump which could 
introduce undesired disturbances. The removed water was pumped back into the tunnel to ensure 
a constant static pressure in the test section. The highest suction volume flow rate was 10.5 
liter/min. By adjusting the length of the suction pipe the flow rate could be increased or 
decreased. Tru^ adjustment was performed whenever the flow conditions (e.g. Reynolds number) 
were altered. We took great care to ensure that the boundary layer suction was as axisymmetric 
as possible. 

Fig. 5.3: Lathed aluminum positive. 
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Fig. 5.4: Manufacturing of displacement body from aluminum positive body, negative fiberglass mold and 
positive half-shell (left). The final displacement body with boundary layer suction holes is shown on the 
right. 

Fig. 5.5: Fluorescent dye injection on surface of modular fiat plate. 

5.1.3 Flat Plate 

In addition to the displacement body, a flat plate model was manufactured. The flat plate 
consists of a leading edge, an exchangeable middle section with dye injection holes and a trailing 
edge. The surface roughness was minimized to maintain laminar flow over the entire length of 
the flat plate. Interchangeable middle-sections allow for an adjustment of the plate's 
configuration and length. The dimensions of the flat plate were chosen such that the 
experimental setup could be varied. The dye injection holes allow us to visualize the flow close 
to the wall. The dye flow rate can be regulated from outside the water tunnel. A typical dye 
visualization without displacement body (Fig. 5.5) clearly indicates that the flow over the flat 
plate is laminar. 

5.2 Results from Dye Flow Visualization 

Before we carried out detailed velocity measurements with the La Vision stereoscopic 
Particle Image Velocimetry (PIV) system, we employed fluorescent dye for flow visualization. 
Using dye flow visualizations we were able to identify the reverse flow region and the limiting 
streamlines of separation. The dimensions of the separation bubble were documented for 
different Reynolds numbers. Results are presented for a Reynolds number range of ReD=5,000 to 

43 



ReD=l 5,000, a wall-normal distance of the displacement body from the flat plate of H=l, and a 
downstream distance of the displacement body from the leading edge of the flat plate of S = 
2.5D. For a Reynolds number of RQD = 5,000 the bubble was found to be steady. For Reo = 
7,500 the separation bubble was almost steady (Fig. 5.6), whereas for higher Reynolds numbers 
the bubble was found to shed vortical structures. 

Fig. 5.6: Perspective view (left; flow direction from left to right) and view from the back (right; flow 
direction towards the observer) for ReD = 7,500. The separation bubble was visualized using fluorescent 
dye. 

Fig. 5.7: Flow visualization without (left) and with (right) boundary layer suction for Ren=7,500, H=l 
andS=2.5D. 

In order to generate a sufficiently large pressure gradient on the flat plate, flow separation 
from the displacement body had to be prevented by applying boundary layer suction. Dye flow 
visualization was utilized to optimize the suction flow rate (Fig. 5.7). Without suction the flow 
separates near the apex of the displacement body, whereas with boundary layer suction the flow 
remains attached and the dye lines follow the contours of the displacement body. 

For the baseline case (Reo=7,500, H=l and S=2.5D) two so-called "horn vortices" are 
present on the flat plate. The topology of the bubble can be outlined by streamlines in the 
symmetry plane and by surface skin friction lines. The best flow visualization results were 
obtained when the fluorescent dye was injected through four holes on the surface of the flat plate 
(Fig. 5.8). The limiting streamlines are characterized by a saddle point (S) which is the upstream 
separation location in the symmetry plane as well as two foci (F) which are situated at the base of 
the horn vortices. To capture the development of the foci in our visualizations, only the outer 
streamlines of the bubble were visualized as shown on the right in Fig. 5.9. 
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Fig. 5.8: Transient development of separation bubble (after pressure gradient is applied by turning on 
boundary layer suction) for the baseline case (Rer>=7,500, H=l, S=2.5D). 

Fig. 5.9: Location of foci in three dimensional separation bubble. Flow topology sketch (left) by Perry 
and Chong [1986] and dye flow visualization (right) for Re = 7,500, H = 1, and S = 2.5D. 

For high enough Reynolds numbers the separated flow becomes unstable, resulting in the 
shedding of vortical flow structures from the bubble. With increasing Reynolds number the 
unsteady flow structures appear further upstream, leading to an earlier reattachment of the 
separated flow. This trend is shown in Fig. 5.10. We also found that by bringing the 
displacement body closer to the flat plate the shedding frequency could be increased. In addition, 
for certain conditions we observed a so-called bubble "breathing" that results in an intermittent 
change of the physical size of the separation bubble (Fig. 5.11). 
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Fig. 5.10: Side view of separation bubbles for Reynolds number range ReD = 5,000 to ReD = 15,000 using 
fluorescent dye. As the Reynolds number is increased beyond 7,500, the bubble begins to shed vortical 
structures. The dominant shedding frequency of each case is shown in the lower right corner. 

Fig. 5.11: Sideview of the separation bubble for Rei}=5,000, H = 1, and S = 2.5D. Dye flow visualizations 
showing the two states (steady and unsteady) of the "bubble breathing" cycle. 

5.3 PIV Measurements 

For all Reynolds numbers considered (Reo = 5,000 to Reo = 15,000) we measured the 
instantaneous velocity components in the mid-span plane and parallel spanwise planes. Since the 
field of view of one camera is limited to about 50mm, several sets of images were taken and later 
on patched together. First, instantaneous velocity measurements were obtained at a number of 
locations in downstream direction, and then the averaged velocity field over the entire extent of 
the separation bubble was constructed from the instantaneous data. Finally, velocity profiles at 
different downstream locations were extracted from the time-averaged PIV data (Fig. 5.12). 
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Normalized with the freestream velocity, the velocity profiles confirmed the different local flow 
behavior which was already observed in the dye flow visualizations. A Blasius velocity profile 
was measured upstream of the separation bubble. In the bubble, inflectional profiles with various 
degrees of reverse flow near the wall were obtained. 

Using PIV, we also measured the flow around the displacement body to once more confirm 
that the suction strength and distribution were appropriate (Fig. 5.13). We then measured the 
time-averaged flow in the mid-span plane. In Fig. 5.14 the results from these measurements for 
various Reynolds numbers are presented. Streamlines overlaid with streamwise velocity 
contours, as well as velocity profiles at different downstream locations are shown. As already 
observed in the dye flow visualizations, the length of the separation bubble decreases with 
increasing Reynolds number. In addition, the time-averaged PIV measurements also indicate that 
the separation bubble height decreases with increasing Reynolds number. 

For a Reynolds number range of ReD = 7,500 to Reo = 15,000 we observed an intermittency 
phenomenon. Due to the recirculating fluid in the separation bubble, the size of the bubble, in 
particular its height, increases. The separated shear layer moves away from the wall and the 
reverse flow velocity increases to a point where the bubble starts shedding (Fig. 5.11). The 
vortical structures associated with the shedding lead to flow reattachment, which weakens the 
reverse flow and stops the shedding. The frequency of this "breathing" cycle was found to be in 
the order of fbreath = 0.03 Hz to 0.2 Hz for ReD = 7,500 to 15,000. 
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Fig. 5.12: PIV data: Time averaged velocity profiles at different downstream locations relative to the flat 
plate leading edge (normalized with free stream velocity: Ren =5,000, H=l, S=2.5D). 
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Boundary Layer Suction OFF 
Ft* D:     5000 

Fig. 5.13: PIV data: Streamlines showing the separated boundary layer without (top) and the attached 
boundary layer with boundary layer suction (bottom). 
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Separation Bubble 
Re D 7500 

separation Bubble 
Re D 10000 

Separation Bubble 
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Fig. 5.14: PIV data for ReD = 5,000 to Re„ = 15,000, H = 1 and S = 2.5D. Streamlines and velocity 
contours of streamwise velocity in the mid-span plane (z=0), as well as velocity profiles at different 
downstream locations. 
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6. SQUARE-DUCT FLOW SIMULATIONS 

Before investigating the Stanford diffuser flow, which is physically more complex and which 
features a turbulent separation bubble, we carried out simulations of a square-duct flow using 
DNS, RANS, and hybrid RANS/LES. The purpose of these simulations was to determine the 
grid resolution required for DNS and to assess RANS and hybrid models for a well documented 
3-D channel flow. For these simulations the Reynolds number based on bulk velocity and 
hydraulic diameter was Reb=10,000. 

6.1 Computational Grid 

The hybrid turbulence model simulations were carried out for 3 different grid resolutions to 
determine how well the hybrid models adapt to changes in the grid resolution. We employed 
computational grids with 192x40x40 (coarse grid, 307,200 cells), 192x54x54 (medium grid, 
559,872 cells) and 384x80x80 (fine grid, 2,457,600 cells) cells (Fig. 6.1). The near-wall grid 
resolution in wall units Ax+xAy+xAz+ was 82.1x0.941 xl. 88. ..43.6 (coarse grid), 
41.1x0.941x1.88...20.6 (medium grid), and 20.5x0.941x1.88...9.87 (fine grid). In addition, as a 
reference, we also carried out a direct numerical simulation (DNS) on a super fine grid with 
384x160x160 cells (9,830,400 cells, Fig. 6.2) where we resolved all scales of motion. The near 
wall grid line spacing in wall units was Ax+=10.3, Ay+=0.314, Az+=0.627...4.62. The grids were 
generated such that the laminar sublayer was resolved. 

• 

Fig. 6.1: Cross-sectional views of lower left corner of computational domains for hybrid RANS/LES 
simulations of square-duct flow. From left to right: Coarse, medium, and fine grid. 

Fig. 6.2. Cross-sectional view of computational grid for DNS of square-duct flow. 
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6.2 Domain Length 

We first investigated the effect of the domain length. Huser and Biringen determined a zero 
streamwise correlation for a streamwise separation of 3.2 [Huser and Biringen 1993]. 
Accordingly, a domain length of Lx = 6.4 was chosen. Interestingly, the domain length in the 
DNS by Gavrilakis [1992] was Lx = 5JI while Madabhushi and Vanka [Madabhushi and Vanka 
1991] decided on a domain length of Lx = 2n. To save computer time we performed a domain 
length analysis for the coarse resolution grid using FBR [Johansen et al. 2004] and the 1998 k-co 
model with EASM. During the run time of the simulation we recorded velocity data at the mid- 
channel location. Auto-correlations of the recorded u-velocity component are shown in Fig. 6.3. 
For Lx = JI the auto-correlation has multiple peaks which can be associated with the domain 
length and its multiples. As the domain length is increased by factors of two (with the 
streamwise grid resolution being kept constant at Ax = 2JC/ 192) "in-between" peaks disappear 
and the maxima get smaller indicating reduced coherence of domain length related waves. For Lx 

= 47i a weak peak can still be discerned for At « 10, while at Lx = 87c the auto-correlation is 
almost flat. Isocontours of the u-velocity at mid-span (Fig. 6.4) provide visual evidence of the 
large structures. 

We decided that a domain length of Lx = 87c was sufficient for our coarse grid simulations. 
Out of practical considerations we reduced the domain length to 4TI for the medium and fine grid 
and to 27t and 71 for the super fine grid to keep the number of cells and the computational expense 
down to a reasonable limit. 
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Fig. 6.3 Square-duct flow at Re=l0,000. FBR and 1998 k-co model with EASM. Auto-correlation ofu- 
velocity disturbance aty = z = 0.5 for different streamwise domain extents. 

Fig. 6.4. Square-duct flow at Re=10,000. FBR and 1998 k-comodel with EASM. Isocontours of u-velocity 
(0 ... 1.5, A = 0.1) at mid-span. 
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6.3 Direct Numerical Simulation (DNS) 

An instantaneous visualization obtained from the reference DNS for Re=l0,000 [Gross and 
Fasel 2009a] is provided in Fig. 6.5. Here, the Q vortex identification criterion by Hunt et al. 
[1988] was employed for visualizing vortical structures. The near wall region of turbulence 
production is populated by worm-like structures. In wall bounded flows turbulent streaks have an 
average length and spanwise spacing in wall units of roughly 1000 and 100 [Cantwell 1981]. 

Fig. 6.5: DNS of square-duct flow. IsosurfacesofQ=5. 
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Fig. 6.6: DNS of square-duct flow. Isocontours of streamwise velocity in cross-flow plane (left) and at 
mid span, z=0.5 (right). 
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Fig. 6.7: Auto-correlations of velocity fluctuations at y=z=0.0-193 (dotted lines), 0.297 (dashed lines), 
0.496 (solidlines). 
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Instantaneous visualizations of the streamwise velocity component are provided in Fig. 6.6. 
Also indicated are 3 points which were situated halfway into the channel at y=z=0.0493, 0.297, 
0.496 where time-dependent velocity data was extracted. The turbulent structures are seen to 
reach all the way to the center of the channel. Autocorrelations of the velocity data obtained at 
the 3 locations indicated in Fig. 6.6 over time intervals of 300 are shown in Fig. 6.7. For the short 
domain, Lx = 7t, peaks are seen near At = 2.5 for y = z = 0.496 and 3.2 for y = z = 0.297. With a 
mean flow velocity of about 1.32 near the center of the channel and 1.25 near y = z = 0.297 the 
corresponding downstream wavelengths are 3.3 and 4. Therefore, the peak at At = 2.5 is likely 
related to the domain length. Additional confirmation is provided by the fact that it disappears 
for the longer domain, Lx = 27t. A peak is also seen near At = 4.8 for both, the short and the long 
domain. This peak is likely related to the domain length of Lx = 27t. Although our domain length 
study showed that a domain length of In was insufficient, out of practical considerations and also 
because Huser et al. [1993] used a domain length of 2n in their simulations, we did not further 
increase the downstream extent of the computational domain for our DNS. 

10    10    10   10    10    10   10    10    10 
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Fig. 6.8: Energy spectra computed from velocity fluctuations for short (Lx=n) and long domain (Lx=2n). 

We also computed the energy spectra (Fig. 6.8). The spectra display the -5/3 slope decay 
which is characteristic of the inertial subrange. Distinct peaks are visible at the low frequency 
end of the spectrum. Some of the peaks can be directly related to the peaks in the autocorrelation, 
e.g. for the short domain peaks are located at K = 2nf = 2rc/2.5 = 2.5 and 2rc/3.2 = 2.0. Other 
peaks may likely be associated with energetic coherent flow structures. Since the mean flow is 
almost grid converged, since computations with longer computational domain are expensive, and 
since the purpose of the present DNS was to provide mean flow reference data for comparison 
with RANS and hybrid RANS/LES results, it was decided that the long domain data were 
sufficiently accurate. 
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Fig. 6.9: Temporal and streamwise average of DNS data for Lx=2 n. 

Fig. 6.9 shows temporal and streamwise averages of the flow. As a result of the finite 
duration of the time-averaging process the averages are not fully symmetric. By also averaging 
over all octants a symmetric picture is obtained. When considering isocontours of the 
streamfunction, *F, (y=dy¥ldrz. and w^-d^/dy) counter-rotating streamwise vortices emerge that 
transport high momentum fluid from the center into the corners. This secondary flow of Prandtl's 
second kind is induced by the Reynolds stresses and typical for duct flows with corners. Almost 
identical results were obtained for the short and long domain. The computed bulk velocities of 
1.03 for the short and long domain are in close agreement with the expected result of 1. The 
slight mismatch may be attributed to numerical factors such as accuracy and/or resolution, the 
domain length or the empirical relation (we used Petukhov's) that was employed for obtaining 
the magnitude of the volume force that drives the flow. Velocity profiles in wall units are 
compared in Fig. 6.10. Our DNS data are in good agreement with other simulation data 
[Gavrilakis 1992, Madabhushi and Vanka 1991, Huser and Biringen 1993]. 

53 



Fig. 6.10: Velocity profiles in wall units at wall bisector. 

6.4 Reynolds-Averaged Navier-Stokes (RANS) Calculations 

We also carried out steady RANS calculations for Re=l0,000 and for the coarse, medium, 
and fine grid to determine a suitable underlying RANS model for the hybrid simulations. 
Because hybrid RANS/LES reverts to RANS in the coarse grid limit the accuracy of the RANS 
model is important. Isocontours of eddy viscosity, Ur, turbulence kinetic energy, k, and 
streamfunction, *F, taken in the cross-flow plane are shown in Fig. 6.11. The streamfunction 
isocontours indicate counter-rotating streamwise vortices that transport high momentum fluid 
from the center into the corners. The Explicit Algebraic Stress Model (EASM) [Rumsey and 
Gatski 2001] is needed to capture this secondary flow. With the low-Reynolds number terms the 
near wall turbulence kinetic energy is increased. A comparison with the DNS data is provided in 
Fig. 6.12. Although the secondary flow is captured with the EASM its intensity and spatial 
characteristics only approximately match the DNS data. 

1988 fc-w low-Re k EASM 
tlr k * 

1998 k-ui k EASM 
Mr k * 

medium 

fine 

Fig. 6.11: Square-duct flow at Re=10,000. RANS results. Isocontours of eddy viscosity (fiT = 0 . . . 40), 
turbulence kinetic energy (k = 0 ... 0.02) and streamfunction (lower left quadrant, *F = -0.002 . . . 
0.002) in cross-flow plane obtained from steady RANS calculations. 
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Fig. 6.12: DNS. Isocontours of instantaneous u-velocity (0<u<1.8, Au=0.1). Isocontours of u-velocity 
and streamfunction (-0.001<<P<0.001, A¥=0.0001) for RANS results obtained with 1998 k-co model with 
Boussinesq approximation and EASM. 

A more quantitative comparison becomes possible when considering profiles taken at the 
wall and corner bisector and comparing with our DNS results and the DNS data by Huser and 
Biringen [1993]. The RANS velocity profiles in wall units (Fig. 6.13a) all overshoot the log- 
layer law, u+ = 5 + 1/0.41 In y+, which may be attributed to 3-D effects resulting from the 
vicinity of the neighboring walls, and display a larger log layer slope than the DNS data. The 
mismatch requires further attention in the future. Profiles of the v-velocity taken at the corner 
bisector allow for a comparison of the secondary flow amplitudes (Fig. 6.13b). Our DNS results 
agree with the Huser and Biringen [1993] DNS data with respect to the maximum amplitude, 
although the shapes of the curves are slightly different. The secondary flow is under-predicted in 
the RANS calculations and the amplitude distribution does not match the DNS data. A 

comparison of the Reynolds normal stresses, u'u', vV, and w'w' is provided in Fig. 6.13c. For 
our DNS, statistical quantities were time-averaged over a time interval of 400. Agreement of our 
DNS data with the Huser and Biringen [1993] DNS data is only seen for the streamwise normal 

Reynolds stress. Discrepancies in the vV and w'w' distributions necessitate further 
examination. The RANS data match the DNS data only qualitatively. With the low-Reynolds 
number terms, higher near wall normal Reynolds stresses are predicted. Finally, profiles of the 
Reynolds shear stress and the turbulence kinetic energy are shown in Fig. 6.13d. Surprisingly, 
the Reynolds shear stress profiles from the DNS and RANS are quite close. A very good match 
between the two DNS data sets is seen for the turbulence kinetic energy. Especially near the wall 
the turbulence kinetic energy distribution obtained from the RANS calculation with low- 
Reynolds number terms agrees reasonably well with the DNS data. Without low-Reynolds 
number terms, the near wall turbulence kinetic energy peak is, as expected, under-predicted. 
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Fig. 6.13: Square-duct flow at Re=10,000. a) Wall bisector profiles of streamwise velocity in wall units, 
b) Corner bisector profiles of v-velocity component, c) and d) Wall bisector profiles of Reynolds stresses 
and turbulence kinetic energy. Black lines: u from Fig. 6, run B, —v from Fig. 7b, run B, u'u' and u'v' 
from Fig. llc/a, v'v' and w'w' from Fig. lia/b in Huser and Biringen [1993J; Green lines: our DNS; 

C [van lines: RANS, 1988 k-co low-Re and EASM; Blue lines: RANS, 1998 k-co and EASM. 

6.5 Hybrid RANS/LES Simulations 

We then computed the same flow using two hybrid turbulence models that we determined 
successful in an earlier numerical campaign [Gross and Fasel 2008b, 2009a,b]. We employed 
both, a modified version of our flow simulation methodology (FSM) [Speziale 1997, Fasel et al. 
2002] where the model contribution is computed from the von Karman energy spectrum and the 
filter-based RANS approach [Johansen et al. 2004] with filter-width set equal to the local grid 
line spacing. An approach similar to the one by Batten et al. [2004] was employed for "injecting" 
or "seeding" statistically random turbulent motion in regions with vanishing model contribution 
[Gross and Fasel 2009b]. As underlying turbulence models we employed the 1988 k-co model 
with low-Reynolds number terms and the 1998 k-co model, both with EASM. Time-averages 
were computed over time-intervals of 400, except for the coarse grid FSM with 1988 k-co model 
and low-Reynolds number terms and the medium grid FSM with 1998 k-co model for which 
time-averages were computed over time-intervals of 360 and 300, respectively. 

Velocity fluctuations were computed with respect to the unprocessed "raw" time-averages, 
meaning that the time-averages were not averaged in the streamwise direction and over the 8 
octants. The reasoning behind this approach was that any imbalances or inaccuracies in the code 
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that may result in an asymmetry in the solution, which would be captured in the time-averages, 
would result in a systematic error if the time-averages were averaged in the streamwise direction 
or over the 8 octants. For the cases where the computed bulk velocities were close to the DNS 
value of 1.03 statistical quantities were computed over a time interval of 400. 

coarse grid, 192 x 40 * 40=0.307million cells, Lx = 8TT 

FBR 
88fc-w low-Re k EASM 

FBR 
98 fe-w k EASM 

FSM 
88 k-ui low-Re k EASM 

FSM 
98 k-uj k EASM 

FBR 
88 fc-w low-Re k EASM 

FBR 
98 k-uj k EASM 

FSM 
SSk-u low-Re k EASM 

FSM 
98 k-ui k EASM 

FBR 
88 fc-u; low-Re k EASM 

FBR 
98 k-ui k EASM 

medium grid. 192 x 54 x 54—0.560million cells. Lx = 47r 

fine grid. 384 x 80 x80=2.46million cells. Lr = 4TT 

super fine grid. 384 x 160 < lC0=9.83million cells, Lj. = 2ff 

DNS 

Q = 0.1 * A> feu / VT„ 

Fig. 6.14: Square-duct flow at Re=l0,000. Hybrid RANS/LES and DNS. Isosurfaces of Q = 0.1, and 
isocontours of streamfunction, V= —0.002 . . . 0.002, resolved turbulence kinetic energy, kr = 0 . . . 0.02, 
unresolved turbulence kinetic energy, ku = 0 . . . 0.02, model contribution, f = 0 ... 1, and unresolved 
eddy viscosity, y.ju = 0 ... 20. 

An overview of the different cases is provided in Fig. 6.14. When considering the isosurfaces 
of the vortex identification criterion, Q = 0.1, which allows for an identification of vortical flow 
structures, the most small-scale structures are, as expected, observed for the DNS on the super 
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fine grid. As the grid resolution is reduced more and more of the resolved turbulence kinetic 
energy, kr, is absorbed in the unresolved turbulence kinetic energy, ku, and less and less small- 
scale flow structures are resolved. Isocontours of the streamfunction, *¥, taken in a cross-flow 
plane illustrate the secondary flow. Differences in the predicted secondary flow distributions are 
indicative of differences in the particular Reynolds stress distributions which drive the secondary 
flow (Fig. 6.14). Huser et al. [1994] compared results obtained from a RANS calculation based 
on Speziale's non-linear k-e model with DNS data. They found significant differences between 
the model prediction and the DNS results, such as an underprediction of the intensity of the 
secondary flow. The model contribution, f, provides a measure for how much turbulence 
modeling is afforded by the hybrid RANS/LES models. With increasing grid resolution the 
model contribution is reduced. With FBR and 1988 k-co model with low-Reynolds number terms 
the model contribution is 1 at the highest grid resolution and the unresolved eddy viscosity is 
close to 0. This inconsistency requires further investigation. In general, a lower model 
contribution, f, coincides with a smaller unresolved eddy viscosity, uru, and more resolved flow 
structures. In all instances, the model contribution is 1 near the wall which is desirable as modern 
RANS models capture wall bounded turbulent flows with high fidelity. The model contribution 
is seen to be slightly larger for the 1998 k-co model than for the 1988 k-co model with low- 
Reynolds number terms. Also, the model contribution is lower for the FSM than for the FBR 
which again manifests itself in a larger number of resolved flow structures. However, for the 
FBR model the constant C3 could be adjusted for reducing the model contribution. The 
unresolved eddy viscosity, uru, even on the coarse grid, is always less than 20 which indicates 
that the turbulence model contribution in the present simulations is relatively low. 

modeling coarse medium        fine super fine 
DNS 1.03 
RANS, 88 k-co low-Re & EASM 
RANS, 98 k-co & EASM 
FBR, 88 k-co low-Re* 
FBR, 88 k-co low-Re & EASM 
FBR, 98 k-co low-Re* 
FBR, 98 k-co & EASM 
FSM, 88 k-co low-Re & EASM 
FSM, 98 k-co & EASM  

Tab. 6.1: Square-duct flow at Re=l0,000. Computed bulk velocities. *-Discontinued, approximate 
results; t- Steady solutions. 

A summary of the computed bulk velocities is provided in Tab. 6.1. The DNS result is 
highlighted in green as it provides the reference for the hybrid simulations. Since we use the 
same code for the hybrid simulations, the DNS result should be approached in the fine grid limit. 
The RANS results are highlighted in blue as they provide the low-grid resolution reference for 
the hybrid simulations. As the grid resolution is reduced the RANS result should be approached. 
The bulk velocities obtained from our hybrid simulations with FBR, 1998 k-co model, and 
EASM approach the RANS result in the coarse grid limit and the DNS result in the fine grid 
limit. With FBR, 1988 k-co model, low-Reynolds number terms, and EASM a very good bulk 
velocity prediction is already obtained for the medium resolution grid, however, for the fine grid, 
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as was seen earlier (Fig. 6.14) the unresolved eddy viscosity goes to zero and the predicted bulk 
velocity is too high. With 1988/98 k-co model, Boussinesq approximation, and low-Reynolds 
number terms steady solutions were obtained for the coarse grid. Medium grid resolution 
simulations were not attempted. The fine grid simulation with 1998 k-co model was unsteady. 
With the present version of the FSM the predicted bulk velocities are slightly too high and the 
model contribution is too low. 

coarse 
hvhrid 

Bne 
hybrid 

Fig. 6.15: Square-duct flow at Re=10,000. Isocontours of streamwise vorticity, o^ = -10 . 
obtained from FBR with 1998 k-co model and EASM and DNS. 

Isocontours of the streamwise wall vorticity, 

dw    dv 

10, atz = 0 

co, = 
8y     dz 

(6.1) 

provide evidence of near wall streamwise vortical structures (Fig. 6.15). Again it can be seen 
how the number and intensity of the flow structures is reduced with decreasing grid resolution. 
Velocity profiles and profiles of turbulence kinetic energy (unresolved, resolved, and total) for 
the FBR are shown in Fig. 6.16. The medium and fine grid velocity profiles obtained with both, 
1988 k-co model with low-Reynolds number terms and 1998 k-co model, almost match the DNS 
profile in the log-layer. The coarse grid velocity profiles approach or overshoot the RANS result 
near the center of the channel. The total turbulence kinetic energy, k, was computed by 
summation of the time-averaged unresolved turbulence kinetic energy, ku, which attains its 
maximum near the wall, and the time-averaged resolved turbulence kinetic energy, kr, which was 
computed from the unsteady velocity fluctuations and which attains its maximum further away 
from the wall and more towards the center of the channel. The total turbulence kinetic energy is 
higher for the 1988 k-co model with low-Reynolds terms than for the 1998 k-co model. With 1998 
k-co model the total turbulence kinetic energy shows the same near wall magnitude as for the 
DNS. As the grid resolution is reduced the location of the peak of the total turbulence kinetic 
energy moves away from the wall as the unresolved turbulence kinetic energy distribution begins 
to approach the RANS result. 
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Fig. 6.16: Square-duct flow at Re=10,000. Wall bisector profiles of a) streamwise velocity in wall units 
and b) total (red), resolved (orange) and unresolved (magenta) turbulence kinetic energy obtained from 
FBR simulations. Green lines: DNS; Cyan lines: RANS, 1988 k-a low-Re and EASM; Blue lines: RANS, 
1998 k-co and EASM. Red lines: hybrid models as indicated. Dotted lines: Coarse grid; Dashed lines: 
Medium grid; Solid lines: Fine grid. 
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Fig. 6.17: Square-duct flow at Re=10,000. Wall bisector profiles of a) streamwise velocity in wall units 
and b) total (red), resolved (or mge) and unresolved (magenta) turbulence kinetic energy obtained from 
FSM simulations. Green lines: DNS; Cyan lines: RANS, 1988 k-co low-Re and EASM; Blue lines: RANS, 
1998 k-co and EASM. Red lines hybrid models as indicated. Dotted lines: Coarse grid; Dashed lines: 
Medium grid; Solid lines: Fine grid. 

Similar graphs for the FSM are provided in Fig. 6.17. Turbulence kinetic energy distributions 
are not shown for the FSM with 1988 k-co model and low-Reynolds terms. Because the predicted 
bulk velocities were too high we decided against computing statistical quantities. The velocity 
profiles in wall units obtained from the FSM are closer to the RANS than to the DNS result as 
the grid resolution is increased from coarse to medium. Turbulence kinetic energy distributions 
are only available for the coarse grid FSM with 1998 k-co model. Compared with the FBR result, 
the resolved turbulence kinetic energy and accordingly also the total turbulence kinetic energy 
are increased. 
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F/'g. 6.18: Square-duct flow at Re-10,000. a) Auto-correlations and b) frequency spectra of u-velocity 
perturbation at y = z = 0.5. Green lines: DNS; hybrid models as indicated: Red lines. Coarse grid: 
Magenta lines. Medium grid; Orange lines: Fine grid. Black lines: -5/3 slope of inertial sub-range. 

Auto-correlations and frequency spectra of the u-velocity perturbation, u'=u-U, at the mid- 
channel location are shown in Fig. 6.18. The data appears sufficiently de-correlated in time, 
leading to the conclusion that the streamwise domain extent was likely sufficient. However, the 
original intent was to identify extrema in the auto-correlations and correlate them with dominant 
wavelengths in the flow and then to investigate how well those waves are represented by the 
different hybrid RANS/LES approaches for different grid resolutions. Spectra are shown in Fig. 
6.18b. The low frequency end of the spectra is not well resolved because of the limitation of the 
time intervals over which time-dependent data was recorded. Nevertheless, Fig. 6.18b indicates 
that the inertial sub-range is captured by the DNS and partially captured by the medium and fine 
grid hybrid simulations. Fig. 6.18b also shows how the wave number cutoff is shifted to lower 
wave-numbers as the grid resolution is reduced. 
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6.6 Rectangular Duct Flow 

As a next step towards simulations of the entire diffuser we then computed the approach 
channel flow of the Stanford diffuser experiment [Cherry et al. 2008]. The approach channel 
flow Reynolds number based on channel height was 10,000 (or Re=15,381 based on hydraulic 
diameter). The computational domain (Fig. 6.19) had dimensions (lengthx heightx width) of 
6.66x1x3.33 and a resolution of 64x96x96 cells. The near wall grid line spacing in wall units 
was Ax+=62, Ay+=0.89, and Az+=1.8...33 at the "long" wall (y=0) and Ax+=62, Ay+=1.78...7.1, 
and Az+=0.89 at the "short" wall (z=0). Again, we first obtained RANS solutions with the 1998 
k-co model (Fig. 6.20). In agreement with the experiment a secondary flow is captured with the 
EASM (Fig. 6.21). The computed bulk velocities are 1.05 (Boussinesq approximation) and 1.08 
(EASM). 

Fig. 6.19: Computational grid for RANS and hybrid simulations of approach channel flow. 

time-av. u-velocity streamfunction 

1998 k-u) 

1998 k-u, EASM 

Fig. 6.20: RANS results obtained with 1998 k-co model. Isocontours of streamwise velocity (0<u<1.8, 
Au=0.1) and streamfunction (-0.001 <¥<0.001, AtF=0.0001). Top: Boussinesq approximation, bottom: 
EASM. 

Instantaneous flow visualizations obtained from hybrid simulations with FSM and filter- 
based RANS (FBR) are shown in Fig. 6.22. We employed both approaches with and without 
"turbulence injection" in areas of vanishing model contribution. Slightly fewer structures are 
seen for the FBR again, indicating a larger model contribution. No difference is seen between the 
instantaneous flow fields with and without "turbulence injection". 

63 



0.004h 

0.002 

•  experiment 
1998k-co 

— 1998k-a)EASM 

oo 0.2 0.4 
y 

0.0      0.5      1.0      1.5 

Fig. 6.21:  Velocity profiles at wall bisectors. Circles: Experiment by Cherry et al. [2008]. 
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Fig. 6.22: Hybrid simulations of approach channel flow without (top) and with "turbulence injection' 
(bottom). Isocontours ofQ=0.1. Left: FSM and right: FBR. 
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Fig. 6.23: Approach channel flow bulk velocities. 

Histories of the computed bulk velocities are shown in Fig. 6.23. The bulk velocities are 
generally higher for the FSM when compared to the filter-based RANS. "Turbulence injection'' 
lowers the bulk velocities possibly as the result of more and strengthened small scale structures. 
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7. DIFFUSER FLOW SIMULATIONS 

We considered our hybrid RANS/LES duct flow simulations successful enough to begin 
simulations of a geometrically and physically more complex flow, the Stanford asymmetric 
diffuser for which measurements indicate a turbulent separated flow region [Cherry et al. 2008]. 
The diffuser inflow bulk Reynolds number based on hydraulic diameter is Re=l 5,380. 

7.1 Computational Grid 

The computational domain for our simulations was broken up into two sub-domains, one for 
the approach channel flow and one for the diffuser (Fig. 7.1). The approach channel flow sub- 
domain had a lengthxheightxwidth ratio of 6.66x1x3.33 with 92x76x96 cells. The near wall grid 
line spacing in wall units was Ax+ = 42.8, Ay+=0.556, and 2.02 < Az+ < 36.3 at y=0 and Ax+ = 
42.8, 1.07 < Ay+ < 13.6, and Az+ = 1.01 at z = 0. The diffuser opens up from a heightx width 
ratio of 1 x3.33 at x = 0 to 4x4 at x = 15. The inflow of the diffuser sub-domain was located at x 
= -0.579 to not fully suppress potential upstream effects of the diffuser flow on the approach 
channel flow. The outflow was located at x = 45. The diffuser grid had 268x76x96 cells. The 
near wall grid line spacing in wall units at the diffuser exit (Re=8,325) was Ax+ = 18.5, Ay+ = 
0.473, and 0.548 < Az+ < 9.87 at y = 0 and Ax+ = 18.5, 0.946 < Ay+ < 12.0, and Az+ = 0.274 at z 
= 0. The total number of cells was 2.7 million. 

4x4 

outflow, x=45 

268x76x96 

92x76x96 

1x3.33 

4-th grid 
shown 

diffuser entry, x=0 

' * 
every 4-th grid line shown 

Temporal simulation Spatial simulation 

Fig. 7.1: Computational grid for diffuser flow simulations. 

7.2 Simulation Results 

We carried out several hybrid simulations [Gross and Fasel 2008b, 2010]. According to 
Margolin and Rider [2002] certain second-order-accurate upwind schemes have similar 
properties as standard LES sub-grid models. This motivated us to perform a simulation with 
second-order-accurate TVD scheme [Yee 1987] for the convective terms and a second-order- 
accurate discretization for the viscous terms. In addition, we performed one simulation with the 
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same discretization as for the hybrid simulations (ninth-order-accurate discretization for the 
convective terms and fourth-order-accurate discretization for the viscous terms) but without 
turbulence model. The time step for all 4 simulations was At = 0.01. The simulations without 
turbulence model were advanced in time over 12000 time steps, which corresponds to 
approximately 7 diffuser flow-through times. For the FBR hybrid simulation with 1988 k-co 
model, low-Reynolds number terms, and EASM time-averaging was initiated after 28000 time 
steps and stopped after 36000 time steps (approximately 5 flow-through times). For the FBR 
hybrid simulation with 1998 k-co model and EASM the time-averaging was initiated after 12000 
time steps and terminated after 36000 time steps (approximately 14 flow-through times). 
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— no model, 02 TVD 
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0 100 200 300 400 
t 

Fig. 7.2: Diffuser approach flow bulk velocities. 

The time-histories of the approach flow bulk velocity are depicted in Fig. 7.2. With the 
second-order-accurate TVD scheme all unsteady flow structures in the approach flow are 
dampened out hinting at excessive numerical diffusion. This loss of unsteady flow structures 
reduces the amount of wall-normal mixing which increases the bulk velocity. Without correction 
of the channel flow volume force the bulk velocity increases beyond 1.8. The resulting diffuser 
inflow Reynolds number is larger than in the experiment. With the higher-order-accurate scheme 
and without turbulence model the approach flow bulk velocity asymptotically approaches a value 
in excess of 1.3. With the hybrid RANS/LES models the approach flow bulk velocity stabilizes 
near 1.04 which, considering the value of 1.03 for the square-duct flow DNS, is an acceptable 
value. 
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a) 02 upwind scheme, no turbulence model b) 09 upwind scheme, no turbulence model 

c) Filter-based RANS d)FSM 

Fig. 7.3: Isosurfaces ofQ=0.01 colored by u-velocity and isocontours ofu-velocity (0...1.5) at z=1.665 

Instantaneous flow visualizations using the Q-criterion [Hunt 1988] are shown in Figs. 7.3 
and 7.4. In all instances small-scale unsteady flow structures are seen in the diffuser (0 < x < 15) 
even for the diffusive second-order-accurate scheme where all unsteadiness in the approach 
channel flow is suppressed. This hints at a strong hydrodynamic instability mechanism that 
generates unsteady flow structures. Few large structures are seen for the diffusive second-order- 
accurate scheme while many small structures are seen for the ninth-order-accurate scheme 
without turbulence modeling. 
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F/g. 7.4: Diffuser at Re=15,380. Isosurfaces ofQ = 1. Side views and top down views. 

Spanwise views of the time-averaged streamwise velocity (Fig. 7.5) provide information 
regarding the shape and extent of the separated flow region. In the experiments, volume data 
were obtained using magnetic resonance velocimetry [Cherry et al. 2008]. In the spanwise plane 
z=1.665 the flow appears to separate near x a 7.5 and not at the diffuser inlet corner at x = 0. A 
similar behavior is observed for the FBR with 1988 k-co model, low-Reynolds number terms, and 
EASM, although no conclusive statement can be made yet because the quality of the time- 
averages is poor. Because the diffuser geometry is asymmetric, data can only be averaged in time 
and time-averages take a long time to converge. For the FBR with 1998 k-co model the flow 
appears to separate at the corner where the diffuser begins to open up, (x, z) = (0, 1.665). and to 
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reattach near (x, z) = (7.5, 1.665). Also noteworthy is that the approach channel flow bulk 
velocity appears to be smaller in the experiment. 

Experiment' 

FBR 
88 k-w low-Re & EASM 

FBR 
98 k-w &: EASM 

•5 0 5 10 15 20 25 30 

Fig. 7.5: Diffuser at Re=15,380. Isocontours of time-averaged streamwise velocity at z = 1.665. 
Measurements by Cherry at al. [2008]. 
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Fig. 7.6: Diffuser at Re=l 5,380. Isocontours of instantaneous unresolved turbulence kinetic energy, 
ku=0. . . 0.02, model contribution, f= 0 . .  1, and unresolved eddy viscosity, /UT,< — 0. . . 10, at z = 1.665. 

Instantaneous visualizations in the spanwise plane, z = 1.665, for the two hybrid RANS/LES 
simulations are shown in Fig. 7.6. Unresolved turbulence kinetic energy, ku, is produced in the 
separated shear layer and near the walls. Both, model contribution, f, and unresolved eddy 
viscosity, u-ru. are larger for the 1998 k-co model than for the 1988 k-co model with low-Reynolds 
number terms. 
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Fig 7.7: Diffuser at Re=15,380. Cross-sectional views of streamwise velocity, u = -0.2 . . . 1. 

Cross-sectional views of streamwise velocity as shown in Fig. 7.7 provide information about 
the shape and extent of the separated flow region. In the experiment at x=5, the flow was 
separated from the top right-hand-side corner. At x=10 and x=15 the flow was separated from 
the entire top wall with the velocity maximum being slightly off to the left from mid-span. At 
x=20 the flow was fully attached. Although the quality of the time-averages obtained from our 
hybrid simulations is insufficient to allow for any final conclusions, the amount of flow 
separation appears under-predicted compared to the experiment. 
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8. SUMMARY AND CONCLUSIONS 

8.1 3-D Separation Bubble on Flat Plate: Simulations and Experiments 

We studied steady and unsteady 3-D separation bubbles on a flat plate using both direct 
numerical simulations (DNS) and water tunnel experiments. Separation was induced by a three- 
dimensional pressure distribution that was generated by an axisymmetric displacement body 
which was placed above the flat plate. Fundamental features that are documented in the literature 
for 3-D separated flows in general as well as for the flow over a hemisphere-cylinder in 
particular could be reproduced in our simulations and experiments. We investigated the effects of 
changes in the Reynolds number and the non-dimensional pressure distribution on the topology 
of the separation. The closed separation topologies that we identified all showed the same 
characteristic pattern of the skin friction lines at the upstream end of the separation bubble; i.e., 
the line of separation connects a saddle point of separation with a focus on either side of the 
symmetry plane. The foci are the roots of so-called "horn-vortices". We also showed that the 
topology at the downstream end of the separation bubble varies considerably for different flow 
conditions. In addition to the closed separation patterns, we also found an open separation 
topology that had not been documented before. The separation patterns that we identified for the 
unsteady cases exhibit a topology, which is equivalent to what is documented in the literature for 
the separated flow over a hemisphere-cylinder at low to intermediate angles of attack. In 
particular, we could detect lines of secondary separation. The fact that the characteristics of the 
separated flow over a hemisphere-cylinder could not always be reproduced in its entirety in our 
flat plate simulations, suggests that future research needs to address the effect of surface 
curvature. Our results also suggest that by adjusting the wall pressure distribution it is possible to 
at least qualitatively duplicate the flow behavior at a different Reynolds number. Our simulation 
results are in qualitative agreement with the accompanying water tunnel experiments. In 
particular, the topology of the bubble and the onset of bubble shedding at larger Reynolds 
numbers could be confirmed. We also noticed a relationship between Reynolds number, vortex 
shedding and the so-called "bubble breathing", as observed by Dogval and Kozlov [1994] for 
two-dimensional separation bubbles. The experiments thus provided guidance and validation for 
our simulations. 

8.2 Simulations of Square-Duct Flow and Asymmetric Diffuser 

We computed a square-duct flow at Re = 10,000, using Reynolds-averaged Navier-Stokes 
(RANS) and hybrid RANS/large eddy simulation (LES) turbulence modeling strategies [Gross 
and Fasel 2010]. We also carried out direct numerical simulations (DNS) of the same square- 
duct flow [Gross and Fasel 2009a]. Data from these DNS and DNS by Huser and Biringen 
[1993] served as a reference for our RANS and hybrid RANS/LES simulations. For our RANS 
and hybrid RANS/LES simulations we considered a modified version of the flow simulation 
methodology (FSM) [Speziale 1997, Fasel et al. 2002, Israel 2005, Zhang et al. 2000] and a 
modified version of the filter-based RANS (FBR) [Johansen et al. 2004] for which "backscatter" 
was introduced [Gross and Fasel 2009a,b]. The hybrid models were based on the 1988 k-co 
model with low-Reynolds number terms and the 1998 k-co model, both with explicit algebraic 
stress model (EASM) by Rumsey and Gatski [2001]. The FBR simulations were found to be in 
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closer agreement with the reference data. In particular, reasonably accurate predictions of the 
bulk velocity and the streamwise velocity profiles in wall units were obtained. Encouraged by 
the channel flow results we carried out hybrid RANS/LES simulations of the Stanford diffuser 
experiment [Cherry et al. 2008] using the FBR model. Also, compared to the experiment, the 
amount of flow separation was underpredicted in our simulations. However, the quality of the 
time-averages was poor, since due to the asymmetric shape of the diffuser data could only be 
averaged in time. The mean flow was found to be strongly dependent on the underlying 
turbulence model. More simulations using longer time-averages and in particular also more 
investigations using different grid resolutions are required to further corroborate our hybrid 
results. In addition, our modified hybrid RANS/LES models require further attention and 
improvement. 

72 



REFERENCES 

Batten, P., Goldberg, U., and Chakravarthy, S., 2004, "Interfacing Statistical Turbulence 
Closures with Large-Eddy Simulation," AIAA Journal, Vol. 42, No. 3, pp. 485-492 

Cantwell, B.K., 1981, "Organized Motion in Turbulent Flow," Annual Review of Fluid 
Mechanics, Vol. 13, pp. 457-515 

Cherry, E.M., Elkins, C.J., and Eaton, J.K., 2008, "Geometric sensitivity of three-dimensional 
separated flows," Int. J. Heat and Fluid Flow, Vol. 29, No. 3, pp. 803-811 

Dogval, A. V., Kozlov, V., and Michalke, A., 1994, "Laminar boundary layer separation: 
Instability and associated phenomena," Prog. Aero. Sciences 

Fasel, H.F., Seidel, J., and Wernz, S., 2002, "A methodology for simulations of complex 
turbulent flows," Transactions of the ASME, Journal of Fluids Engineering, Vol. 124, No. 4, pp. 
933-942 

Gavrilakis, S., 1992, "Numerical simulation of low-Reynolds-number turbulent flow through a 
straight square-duct," Journal of Fluid Mechanics, Vol. 244, pp. 101-129 

Gross, A., and Fasel, H., 2002, "High-Order WENO Schemes Based on the Roe Approximate 
Riemann Solver," AIAA-Paper AIAA-2002-2735 

Gross, A., and Fasel, H.F., 2007, "Characteristic Ghost-Cell Boundary Condition," AIAA 
Journal, Vol. 45, No. 1, pp. 302-306 

Gross, A., and Fasel, H., 2008a. "High-Order Accurate Numerical Method for Complex Flows," 
AIAA Journal, Vol. 46, No. 1, pp. 204-214 

Gross, A., and Fasel, H., 2008b, "Numerical Investigation of Flow Separation in an Asymmetric 
Diffuser," AIAA-2008-671 

Gross, A., and Fasel, H., 2009a, "Hybrid RANS/LES Simulations of Turbulent Channel Flow," 
AIAA-2009-1327 

Gross, A., and Fasel, H., 2009b, "Active Flow Control for Airfoil at Low Reynolds Numbers," 
AIAA-Paper AIAA-2009-4275 

Gross, A., and Fasel, H., 2010, "Hybrid RANS/LES Simulations of Turbulent Channel and 
Diffuser Flows," AIAA-Paper AIAA-2010-919, 48th AIAA Aerospace Sciences Meeting 
Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, Jan. 4-7, 2010 

Hajjawi, M., Taylor, L., and Nichols, S., 2008, "Assessment Of Filtered-Based RANS 
Turbulence Model for Unsteady Separated Flow Prediction," AIAA-Paper AIAA-2008-670 

Hamba, F., 2003, "A Hybrid RANS/LES Simulation of Turbulent Channel Flow," Theoretical 
and Computational Fluid Dynamics, Vol. 16, No. 5, pp. 387-403 

Hsieh, T., and Wang, K. C, 1996, "Three-dimensional separated flow structure over a cylinder 
with a hemispherical cap", Journal of Fluid Mechanics, Vol. 324, pp. 83-108 

Hunt, J.C.R., Wray, A.A., and Moin, P., 1988, "Eddies, stream, and convergence zones in 
turbulent flows," Report CTR-S88, Center For Turbulence Research, Stanford, CA 

73 



Huser, A., and Biringen, S., 1993, "Direct numerical simulation of turbulent flow in a square 
duct," Journal of Fluid Mechanics, Vol. 257, pp. 65-95 

Huser, A., Biringen, S., and Hatay, F.F., 1994, "Direct simulation of turbulent flow in a square 
duct: Reynolds-stress budgets," Physics of Fluids, Vol. 6, No. 9, pp. 3144-3152 

Israel, D.M., 2005, "A New Approach for Turbulent Simulations in Complex Geometries,"' PhD 
dissertation, The University of Arizona 

Jacobi, R., Wernz, S., and Fasel, H.F., 2008, "Numerical Investigation of Localized Separation 
Induced by a Three-Dimensional Pressure Gradient", 38th AIAA Fluid Dynamics Conference 
and Exhibit, AIAA-Paper AIAA-2008-4056 

Johansen, S.T., Wu, J., and Shyy, W., 2004, "Filter-based unsteady RANS computations," 
International Journal of Heat and Fluid Flow, Vol. 25, No. 1, pp. 10-21 

Jones, W.P., Launder, B.E. 1972, "The Prediction of Laminarization with a Two-Equation Model 
of Turbulence," Int. J. of Heat and Mass Transfer, Vol. 15, pp. 301-314 

Kenwright, D., and Haimes, R., 1997, "Vortex identification - applications in aerodynamics", 
IEEE Visualization 97 

Kloker, M., Konzelmann, U., and Fasel, H.F., 1993, "Outflow Boundary Conditions for Spatial 
Navier-Stokes Simulations of Transition Boundary Layers", AIAA Journal, Vol. 3, No. 4, pp. 
620-628 

Lam, C.K.G., and Bremhorst, K.A. 1981, "Modified Form of k-s Model for Predicting Wall 
Turbulence," ASME Journal of Fluids Engineering, Vol. 103, pp. 456-460 

Lighthill, M. J., 1963, "Attachment and Separation in Three-Dimensional Flow", in Laminar 
Boundary Layers, ed. L. Rosenhead, chap. II, pp. 72-82 

Madabhushi, R.K., and Vanka, S.P., 1991, "Large eddy simulation of turbulence-driven 
secondary flow in a square duct," Physics of Fluids A, Vol. 3, No. 11, pp. 2734-2745 

Margolin, L.G., and Rider, W.J., 2002, "A rationale for implicit turbulence modeling." 
International Journal for Numerical Methods in Fluids, Vol. 39, pp. 821-841 

Meitz, H.L., and Fasel, H.F., 2000, "A Compact-Difference Scheme for the Navier-Stokes 
Equations in Vorticity-Velocity Formulation," J. Comp. Phys., Vol. 157, pp. 371-403 

Menter, F.R. 1992, "Influence of Freestream Values on k-co Turbulence Model Predictions," 
AIAA Journal, Vol. 30, No. 6, pp. 1657-1659 

Menter, F.R. 1994, "2-Equation eddy-viscosity turbulence models for engineering applications." 
AIAA Journal, Vol. 32, No. 8, pp. 1598-1605 

Nikuradse, 1926, "Untersuchungen iiber die Geschwindigkeitsverteilung in turbulenten 
Stromungen," Dissertation Gottingen, VDI-Forschungsheft 281 

Pauley, L. L., 1994, "Structure of local pressure-driven three-dimensional transient boundary- 
layer separation", AIAA Journal, Vol. 32, No. 5, pp. 997-1005 

Perry, A., and Chong, M., 1986, "A series-expansion study of the Navier-Stokes equations with 
applications to three dimensional separation patterns", Journal of Fluid Mechanics. Vol. 173, pp. 
207-223 

74 



Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., and Spalart, P.R., 2003, "The inner-outer 
layer interface in large-eddy simulations with wall-layer models", International Journal of Heat 
and Fluid Flow, Vol. 24, No. 4, pp. 538-550 

Postl, D., 2005, "Numerical investigation of laminar separation control using vortex generator 
jets", PhD dissertation, University of Arizona 

Rumsey, C.L., and Gatski, T.B., 2001, "Recent Turbulence Model Advances Applied to 
Multielement Airfoil Computations," Journal of Aircraft, Vol. 38, No. 5, pp. 904-910 

Spalart, P.R., and Allmaras, S.R., 1992, "A One-Equation Turbulence Model for Aerodynamic 
Flows," AIAA-Paper, AIAA-92-0439 

Speziale, C.G., 1997, "A Combined Large-Eddy Simulation and Time-Dependent RANS 
Capability for High-Speed Compressible Flows," Technical Report No. AM-97-022, Boston 
University 

Tobak, M., and Peake, D.J., 1979, "Topology of two-dimensional and threedimensional 
separated flows", AIAA-Paper AIAA-79-1480 

Tobak, M., and Peake, D.J., 1982, "Topology of Three-Dimensional Separated Flows," Annual 
Review of Fluid Mechanics, Vol. 14, pp. 61-85 

von Karman, T., 1948, "Progress in the Statistical Theory of Turbulence," Proc. Natl. Acad. Sci. 
USA, Vol. 34, No. 11, pp. 530-539 

Wilcox, D.C., 2006, "Turbulence Modeling for CFD," Third Edition, DCW Industries. 

Yee, H.C., 1987, "Upwind and Symmetric Shock-Capturing Schemes," NASA Technical 
Memorandum 89464, NASA Ames Research Center, Moffet Field, CA 

Zhang, H.L., Bachman, C.R., and Fasel, H.F., 2000, "Application of a new methodology for 
simulations of complex turbulent flows," AIAA-Paper AIAA-2000-2535 

Zedan, M. F., and Dalton, C, 1978, "Potential flow around axisymmetric bodies: Direct and 
inverse problems", AIAA Journal, Vol. 16, No. 3, 242-250 

75 



PUBLICATIONS RESULTING FROM GRANT 

Kremheller, A., and Fasel, H.F., 2010, "Water Tunnel Experiments on Three Dimensional 
Separation Bubbles on a Flat Plate," 40th AIAA Fluid Dynamics Conference and Exhibit, 
Chicago, IL, AIAA-Paper AIAA-2010-4738 

Gross, A., and Fasel, H., 2010, "Hybrid RANS/LES Simulations of Turbulent Channel and 
Diffuser Flows," AIAA-Paper AIAA-2010-919, 48th AIAA Aerospace Sciences Meeting 
Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, Jan. 4-7, 2010 

Jacobi, R., Gross, A., and Fasel, H.F., 2009, "Numerical Investigation of Three-Dimensional 
Separation in Internal and External Flows," HPCMP Users Group Conference 2009, June 15-18, 
2009, San Diego, CA 

Gross, A., and Fasel, H., 2009, "Hybrid RANS/LES Simulations of Turbulent Channel Flow," 
AIAA-Paper AIAA-2009-1327, 47th AIAA Aerospace Sciences Meeting including The New 
Horizons Forum and Aerospace Exposition, Orlando, Florida, Jan. 5-8, 2009 

Gross, A., Jacobi, R., Wernz, S., and Fasel, H.F., 2008, "Numerical Investigation of Internal and 
External Three-Dimensional Flow Separation," HPCMP Users Group Conference 2008, July 14- 
17,2008, Seattle, WA 

Jacobi, R., Wernz, S., and Fasel, H.F., 2008, "Numerical Investigation of Localized Separation 
Induced by a Three-Dimensional Pressure Gradient", 38th AIAA Fluid Dynamics Conference 
and Exhibit, Seattle, WA, AIAA-Paper AIAA-2008-4056 

Gross, A., and Fasel, H., 2008, "Numerical Investigation of Flow Separation in an Asymmetric 
Diffuser," AIAA-Paper AIAA-2008-671, 46th AIAA Aerospace Sciences Meeting and Exhibit, 
Reno, Nevada, Jan. 7-10, 2008 

76 


